Skip to main content

Advertisement

Log in

Advances and perspectives of dendritic cell-based active immunotherapies in follicular lymphoma

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Follicular lymphoma (FL) is a remarkably immune-responsive malignancy, which is still considered incurable. As, standard immunochemotherapy is complex, toxic and not curative, improvement in FL care is now a crucial topic in hemato-oncology. Recently, we and others have shown that dendritic cell (DC)-based therapies allow a specific immune response associated with sustained lymphoma regression in a proportion of low-tumor burden FL patients. Importantly, the rate of objective clinical response (33–50%) and of sustained remission is remarkably higher compared to similar studies in solid tumors, corroborating the assumption of the immune responsiveness of FL. Our experimental intra-tumoral strategy combined injection with rituximab and interferon-α-derived dendritic cells (IFN-DC), a novel DC population particularly efficient in biasing T-helper response toward the Th1 type and in the cross-priming of CD8 + T cells. Noteworthy, intra-tumoral injection of DC is a new therapeutic option based on the assumption that following the induction of cancer-cell immunogenic death, unloaded DC would phagocytize in vivo the tumor associated antigens and give rise to a specific immune response. This approach allows the design of easy and inexpensive schedules. On the other hand, advanced and straightforward methods to produce clinical-grade antigenic formulations are currently under development. Both unloaded DC strategies and DC-vaccines are suited for combination with radiotherapy, immune checkpoint inhibitors, immunomodulators and metronomic chemotherapy. In fact, studies in animal models have already shown impressive results, while early-phase combination trials are ongoing. Here, we summarize the recent advances and the future perspectives of DC-based therapies in the treatment of FL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DC:

Dendritic cells

FL:

Follicular lymphoma

GM-CSF:

Granulocyte macrophage colony-stimulating factor

ICI:

Immune checkpoint inhibitor

IFN-DC:

IFN-α-conditioned dendritic cells

IFN-α:

Interferon alpha

IFN-γ:

Interferon gamma

IL-4-DC:

Interleukine-4

KLH:

Keyhole limpet hemocyanin

LTB:

Low tumor burden

NHL:

Non-Hodgkin lymphoma

NK:

Natural killer

NOD-SCID:

Non-obese diabetic/severe combined immunodeficiency

PBL:

Peripheral blood lymphocytes

Relapsed/Refractory:

RR

TNF-α:

Tumor necrosis factor alpha

Treg:

Regulatory T cells

TAA:

Tumor associated antigens

References

  1. Freedman A (2018) Follicular lymphoma: 2018 update on diagnosis and management. Am J Hematol 93:296–305. https://doi.org/10.1002/ajh.24937

    Article  CAS  PubMed  Google Scholar 

  2. Ardeshna KM, Qian W, Smith P et al (2014) Rituximab versus a watch-and-wait approach in patients with advanced-stage, asymptomatic, non-bulky follicular lymphoma: an open-label randomised phase 3 trial. Lancet Oncol 15:424–435. https://doi.org/10.1016/S1470-2045(14)70027-0

    Article  CAS  PubMed  Google Scholar 

  3. Bachy E, Seymour JF, Feugier P et al (2019) Sustained progression-free survival benefit of rituximab maintenance in patients with follicular lymphoma: long-term results of the prima study. J Clin Oncol 37:2815–2824. https://doi.org/10.1200/JCO.19.01073

    Article  CAS  PubMed  Google Scholar 

  4. Marcus R, Davies A, Ando K et al (2017) Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med 377:1331–1344. https://doi.org/10.1056/NEJMoa1614598

    Article  CAS  Google Scholar 

  5. Casulo C, Nastoupil L, Fowler NH et al (2017) Unmet needs in the first-line treatment of follicular lymphoma. Ann Oncol Off J Eur Soc Med Oncol 28:2094–2106. https://doi.org/10.1093/annonc/mdx189

    Article  CAS  Google Scholar 

  6. Hiddemann W, Barbui AM, Canales MA et al (2018) Immunochemotherapy with obinutuzumab or rituximab for previously untreated follicular lymphoma in the gallium study: influence of chemotherapy on efficacy and safety. J Clin Oncol 36:2395–2404. https://doi.org/10.1200/JCO.2017.76.8960

    Article  CAS  PubMed  Google Scholar 

  7. Freeman CL, Kridel R, Moccia AA et al (2019) Early progression after bendamustine-rituximab is associated with high risk of transformation in advanced stage follicular lymphoma. Blood 134:761–764. https://doi.org/10.1182/blood.2019000258

    Article  CAS  PubMed  Google Scholar 

  8. Maddocks K, Barr PM, Cheson BD et al (2017) Recommendations for clinical trial development in follicular lymphoma. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djw255

    Article  PubMed  PubMed Central  Google Scholar 

  9. Morschhauser F, Fowler NH, Feugier P et al (2018) Rituximab plus lenalidomide in advanced untreated follicular lymphoma. N Engl J Med 379:934–947. https://doi.org/10.1056/NEJMoa1805104

    Article  CAS  Google Scholar 

  10. Chiu H, Trisal P, Bjorklund C et al (2019) Combination lenalidomide-rituximab immunotherapy activates anti-tumour immunity and induces tumour cell death by complementary mechanisms of action in follicular lymphoma. Br J Haematol 185:240–253. https://doi.org/10.1111/bjh.15797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bogen B, Ruffini P (2009) Review: to what extent are T cells tolerant to immunoglobulin variable regions? Scand J Immunol 70:526–530. https://doi.org/10.1111/j.1365-3083.2009.02340.x

    Article  CAS  PubMed  Google Scholar 

  12. Schuster SJ, Neelapu SS, Gause BL et al (2011) Vaccination with patient-specific tumor-derived antigen in first remission improves disease-free survival in follicular lymphoma. J Clin Oncol 29:2787–2794. https://doi.org/10.1200/JCO.2010.33.3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Levy R, Ganjoo KN, Leonard JP et al (2014) Active idiotypic vaccination versus control immunotherapy for follicular lymphoma. J Clin Oncol 32:1797–1803. https://doi.org/10.1200/JCO.2012.43.9273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wculek SK, Cueto FJ, Mujal AM et al (2019) Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. https://doi.org/10.1038/s41577-019-0210-z

    Article  PubMed  Google Scholar 

  15. Wimmers F, Schreibelt G, Sköld AE et al (2014) Paradigm shift in dendritic cell-based immunotherapy: from in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front Immunol 5:165. https://doi.org/10.3389/fimmu.2014.00165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santini SM, Lapenta C, Logozzi M et al (2000) Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med 191:1777–1788. https://doi.org/10.1084/jem.191.10.1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santini SM, Lapenta C, Santodonato L et al (2009) IFN-alpha in the generation of dendritic cells for cancer immunotherapy. Handb Exp Pharmacol. https://doi.org/10.1007/978-3-540-71029-5_14

    Article  PubMed  Google Scholar 

  18. Parlato S, Santini SM, Lapenta C et al (2001) Expression of CCR-7, MIP-3beta, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood 98:3022–3029. https://doi.org/10.1182/blood.v98.10.3022

    Article  CAS  PubMed  Google Scholar 

  19. Cox MC, Castiello L, Mattei M et al (2019) Clinical and antitumor immune responses in relapsed/refractory follicular lymphoma patients after intranodal injections of IFNα-dendritic cells and rituximab: a phase I clinical trial. Clin Cancer Res 25:5231–5241. https://doi.org/10.1158/1078-0432.CCR-19-0709

    Article  CAS  PubMed  Google Scholar 

  20. Stroncek DF, Basil C, Nagorsen D et al (2005) Delayed polarization of mononuclear phagocyte transcriptional program by type I interferon isoforms. J Transl Med 3:24. https://doi.org/10.1186/1479-5876-3-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Korthals M, Safaian N, Kronenwett R et al (2007) Monocyte derived dendritic cells generated by IFN-alpha acquire mature dendritic and natural killer cell properties as shown by gene expression analysis. J Transl Med 5:46. https://doi.org/10.1186/1479-5876-5-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lapenta C, Santini SM, Spada M et al (2006) IFN-alpha-conditioned dendritic cells are highly efficient in inducing cross-priming CD8(+) T cells against exogenous viral antigens. Eur J Immunol 36:2046–2060. https://doi.org/10.1002/eji.200535579

    Article  CAS  PubMed  Google Scholar 

  23. Spadaro F, Lapenta C, Donati S et al (2012) IFN-α enhances cross-presentation in human dendritic cells by modulating antigen survival, endocytic routing, and processing. Blood 119:1407–1417. https://doi.org/10.1182/blood-2011-06-363564

    Article  CAS  PubMed  Google Scholar 

  24. Lattanzi L, Rozera C, Marescotti D et al (2011) IFN-α boosts epitope cross-presentation by dendritic cells via modulation of proteasome activity. Immunobiology 216:537–547. https://doi.org/10.1016/j.imbio.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  25. Santini SM, Lapenta C, Donati S et al (2011) Interferon-α-conditioned human monocytes combine a Th1-orienting attitude with the induction of autologous Th17 responses: role of IL-23 and IL-12. PLoS ONE 6:e17364. https://doi.org/10.1371/journal.pone.0017364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lapenta C, Donati S, Spadaro F et al (2016) NK cell activation in the antitumor response induced by IFN-α dendritic cells loaded with apoptotic cells from follicular lymphoma patients. J Immunol 197:795–806. https://doi.org/10.4049/jimmunol.1600262

    Article  CAS  PubMed  Google Scholar 

  27. Bandola-Simon J, Roche PA (2019) Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol Immunol 113:31–37. https://doi.org/10.1016/j.molimm.2018.03.025

    Article  CAS  PubMed  Google Scholar 

  28. Timmerman JM, Czerwinski DK, Davis TA et al (2002) Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 99:1517–1526. https://doi.org/10.1182/blood.V99.5.1517

    Article  CAS  PubMed  Google Scholar 

  29. Di Nicola M, Zappasodi R, Carlo-Stella C et al (2009) Vaccination with autologous tumor-loaded dendritic cells induces clinical and immunologic responses in indolent B-cell lymphoma patients with relapsed and measurable disease: a pilot study. Blood 113:18–27. https://doi.org/10.1182/blood-2008-06-165654

    Article  CAS  PubMed  Google Scholar 

  30. Zappasodi R, Bongarzone I, Ghedini GC et al (2011) Serological identification of HSP105 as a novel non-Hodgkin lymphoma therapeutic target. Blood 118:4421–4430. https://doi.org/10.1182/blood-2011-06-364570

    Article  CAS  PubMed  Google Scholar 

  31. Zappasodi R, Pupa SM, Ghedini GC et al (2010) Improved clinical outcome in indolent B-cell lymphoma patients vaccinated with autologous tumor cells experiencing immunogenic death. Cancer Res 70:9062–9072. https://doi.org/10.1158/0008-5472.CAN-10-1825

    Article  CAS  PubMed  Google Scholar 

  32. Selenko N, Majdic O, Draxler S et al (2001) CD20 antibody (C2B8)-induced apoptosis of lymphoma cells promotes phagocytosis by dendritic cells and cross-priming of CD8+ cytotoxic T cells. Leukemia 15:1619–1626. https://doi.org/10.1038/sj.leu.2402226

    Article  CAS  PubMed  Google Scholar 

  33. Franki SN, Steward KK, Betting DJ et al (2008) Dendritic cells loaded with apoptotic antibody-coated tumor cells provide protective immunity against B-cell lymphoma in vivo. Blood 111:1504–1511. https://doi.org/10.1182/blood-2007-03-080507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kolstad A, Kumari S, Walczak M et al (2015) Sequential intranodal immunotherapy induces antitumor immunity and correlated regression of disseminated follicular lymphoma. Blood 125:82–89. https://doi.org/10.1182/blood-2014-07-592162

    Article  CAS  PubMed  Google Scholar 

  35. Hammerich L, Marron TU, Upadhyay R et al (2019) Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med 25:814–824. https://doi.org/10.1038/s41591-019-0410-x

    Article  CAS  PubMed  Google Scholar 

  36. Vilcek J (2006) Fifty years of interferon research: aiming at a moving target. Immunity 25:343–348. https://doi.org/10.1016/j.immuni.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  37. Guilhot F, Roy L, Guilhot J, Millot F (2004) Interferon therapy in chronic myelogenous leukemia. Hematol Oncol Clin North Am 18:585–603. https://doi.org/10.1016/j.hoc.2004.03.002

    Article  PubMed  Google Scholar 

  38. Morroni M, Cinti S (1995) Hairy cell leukemia: an ultrastructural study of hairy cells before and after interferon therapy. Tumori 81:249–55

    Article  CAS  Google Scholar 

  39. Zinzani PL, Magagnoli M, Galieni P et al (1999) Nongastrointestinal low-grade mucosa-associated lymphoid tissue lymphoma: analysis of 75 patients. J Clin Oncol 17:1254. https://doi.org/10.1200/JCO.1999.17.4.1254

    Article  CAS  PubMed  Google Scholar 

  40. Blasi MA, Tiberti AC, Valente P et al (2012) Intralesional interferon-α for conjunctival mucosa-associated lymphoid tissue lymphoma: long-term results. Ophthalmology 119:494–500. https://doi.org/10.1016/j.ophtha.2011.09.008

    Article  PubMed  Google Scholar 

  41. Aricò E, Castiello L, Capone I et al (2019) Type i interferons and cancer: An evolving story demanding novel clinical applications. Cancers (Basel). https://doi.org/10.3390/cancers11121943

    Article  Google Scholar 

  42. Hermine O, Lefrère F, Bronowicki J-P et al (2002) Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med 347:89–94. https://doi.org/10.1056/NEJMoa013376

    Article  CAS  PubMed  Google Scholar 

  43. Cannata-Ortiz J, Nicolás C, García-Noblejas A et al (2019) Rituximab, interferon-alfa-2b and dose dense CVP is highly efficient in patients with FLIPI ≥ 2 follicular lymphoma. Final results of the LNH-PRO-05 study. Br J Haematol 186:168–170. https://doi.org/10.1111/bjh.15760

    Article  PubMed  Google Scholar 

  44. Cole BF, Solal-Céligny P, Gelber RD et al (1998) Quality-of-life-adjusted survival analysis of interferon alfa-2b treatment for advanced follicular lymphoma: an aid to clinical decision making. J Clin Oncol 16:2339–2344. https://doi.org/10.1200/JCO.1998.16.7.2339

    Article  CAS  PubMed  Google Scholar 

  45. Arranz R, García-Alfonso P, Sobrino P et al (1998) Role of interferon alfa-2b in the induction and maintenance treatment of low-grade non-Hodgkin’s lymphoma: results from a prospective, multicenter trial with double randomization. J Clin Oncol 16:1538–1546. https://doi.org/10.1200/JCO.1998.16.4.1538

    Article  CAS  PubMed  Google Scholar 

  46. Rohatiner AZS, Gregory WM, Peterson B et al (2005) Meta-analysis to evaluate the role of interferon in follicular lymphoma. J Clin Oncol 23:2215–2223. https://doi.org/10.1200/JCO.2005.06.146

    Article  CAS  PubMed  Google Scholar 

  47. Schiavoni G, Mattei F, Gabriele L (2013) Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response. Front Immunol 4:483. https://doi.org/10.3389/fimmu.2013.00483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gessani S, Conti L, Del Cornò M, Belardelli F (2014) Type I interferons as regulators of human antigen presenting cell functions. Toxins (Basel) 6:1696–1723. https://doi.org/10.3390/toxins6061696

    Article  CAS  Google Scholar 

  49. Vermi W, Fisogni S, Salogni L et al (2011) Spontaneous regression of highly immunogenic Molluscum contagiosum virus (MCV)-induced skin lesions is associated with plasmacytoid dendritic cells and IFN-DC infiltration. J Invest Dermatol 131:426–434. https://doi.org/10.1038/jid.2010.256

    Article  CAS  PubMed  Google Scholar 

  50. Hirn Lopez A, Deen D, Fischer Z et al (2019) Role of interferon (IFN)α in “Cocktails” for the generation of (Leukemia-derived) dendritic cells (DCleu) from blasts in blood from patients (pts) with acute myeloid leukemia (AML) and the Induction of antileukemic reactions. J Immunother 42:143–161. https://doi.org/10.1097/CJI.0000000000000266

    Article  CAS  PubMed  Google Scholar 

  51. Gabriele L, Borghi P, Rozera C et al (2004) IFN-alpha promotes the rapid differentiation of monocytes from patients with chronic myeloid leukemia into activated dendritic cells tuned to undergo full maturation after LPS treatment. Blood 103:980–987. https://doi.org/10.1182/blood-2003-03-0981

    Article  CAS  PubMed  Google Scholar 

  52. Bialek-Waldmann JK, Heuser M, Ganser A, Stripecke R (2019) Monocytes reprogrammed with lentiviral vectors co-expressing GM-CSF, IFN-α2 and antigens for personalized immune therapy of acute leukemia pre- or post-stem cell transplantation. Cancer Immunol Immunother 68:1891–1899. https://doi.org/10.1007/s00262-019-02406-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grigg A, Kannan K, Schwarer AP et al (2001) Chemotherapy and granulocyte colony stimulating factor-mobilized blood cell infusion followed by interferon-alpha for relapsed malignancy after allogeneic bone marrow transplantation. Intern Med J 31:15–22. https://doi.org/10.1046/j.1445-5994.2001.00013.x

    Article  CAS  PubMed  Google Scholar 

  54. Rizza P, Moretti F, Capone I, Belardelli F (2015) Role of type I interferon in inducing a protective immune response: perspectives for clinical applications. Cytokine Growth Factor Rev 26:195–201. https://doi.org/10.1016/j.cytogfr.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  55. Le Bon A, Schiavoni G, D’Agostino G et al (2001) Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14:461–470. https://doi.org/10.1016/S1074-7613(01)00126-1

    Article  PubMed  Google Scholar 

  56. Montico B, Lapenta C, Ravo M et al (2017) Exploiting a new strategy to induce immunogenic cell death to improve dendritic cell-based vaccines for lymphoma immunotherapy. Oncoimmunology 6:e1356964. https://doi.org/10.1080/2162402X.2017.1356964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brillard E, Pallandre J-R, Chalmers D et al (2007) Natural killer cells prevent CD28-mediated Foxp3 transcription in CD4+CD25- T lymphocytes. Exp Hematol 35:416–425. https://doi.org/10.1016/j.exphem.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  58. Pedroza-Pacheco I, Madrigal A, Saudemont A (2013) Interaction between natural killer cells and regulatory T cells: perspectives for immunotherapy. Cell Mol Immunol 10:222–229. https://doi.org/10.1038/cmi.2013.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bacher N, Graulich E, Jonuleit H et al (2011) Interferon-α abrogates tolerance induction by human tolerogenic dendritic cells. PLoS ONE 6:e22763. https://doi.org/10.1371/journal.pone.0022763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gigante M, Mandic M, Wesa AK et al (2008) Interferon-alpha (IFN-alpha)-conditioned DC preferentially stimulate type-1 and limit Treg-type in vitro T-cell responses from RCC patients. J Immunother 31:254–262. https://doi.org/10.1097/CJI.0b013e318167b023

    Article  CAS  PubMed  Google Scholar 

  61. Papewalis C, Wuttke M, Jacobs B et al (2008) Dendritic cell vaccination induces tumor epitope-specific Th1 immune response in medullary thyroid carcinoma. Horm Metab Res 40:108–116. https://doi.org/10.1055/s-2007-1022565

    Article  CAS  PubMed  Google Scholar 

  62. Lapenta C, Donati S, Spadaro F et al (2019) Lenalidomide improves the therapeutic effect of an interferon-α-dendritic cell-based lymphoma vaccine. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-019-02411-y

    Article  PubMed  Google Scholar 

  63. Weng J, Baio FE, Moriarty KE et al (2016) Targeting B-cell malignancies through human B-cell receptor specific CD4 + T cells. Oncoimmunology 5:e1232220. https://doi.org/10.1080/2162402X.2016.1232220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Khodadoust MS, Olsson N, Chen B et al (2019) B-cell lymphomas present immunoglobulin neoantigens. Blood 133:878–881. https://doi.org/10.1182/blood-2018-06-845156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chiang CL-L, Kandalaft LE, Tanyi J et al (2013) A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res 19:4801–4815. https://doi.org/10.1158/1078-0432.CCR-13-1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu J, Wang X (2019) Focus on exosomes—From pathogenic mechanisms to the potential clinical application value in lymphoma. J Cell Biochem 120:19220–19228. https://doi.org/10.1002/jcb.29241

    Article  CAS  PubMed  Google Scholar 

  67. Vo M-C, Anh-NguyenThi T, Lee H-J et al (2017) Lenalidomide enhances the function of dendritic cells generated from patients with multiple myeloma. Exp Hematol 46:48–55. https://doi.org/10.1016/j.exphem.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  68. Sakamaki I, Kwak LW, Cha SC et al (2014) Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas. Leukemia 28:329–337. https://doi.org/10.1038/leu.2013.177

    Article  CAS  PubMed  Google Scholar 

  69. Nguyen-Pham T-N, Jung S-H, Vo M-C et al (2015) Lenalidomide synergistically enhances the effect of dendritic cell vaccination in a model of murine multiple myeloma. J Immunother 38:330–339. https://doi.org/10.1097/CJI.0000000000000097

    Article  CAS  PubMed  Google Scholar 

  70. Chester C, Sanmamed MF, Wang J, Melero I (2018) Immunotherapy targeting 4–1BB: mechanistic rationale, clinical results, and future strategies. Blood 131:49–57. https://doi.org/10.1182/blood-2017-06-741041

    Article  CAS  PubMed  Google Scholar 

  71. Ansell SM, Lesokhin AM, Borrello I et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319. https://doi.org/10.1056/NEJMoa1411087

    Article  CAS  PubMed  Google Scholar 

  72. Westin JR, Chu F, Zhang M et al (2014) Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol 15:69–77. https://doi.org/10.1016/S1470-2045(13)70551-5

    Article  CAS  PubMed  Google Scholar 

  73. Garris CS, Arlauckas SP, Kohler RH et al (2018) Successful Anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49:1148–1161.e7. https://doi.org/10.1016/j.immuni.2018.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Witzig TE, Nowakowski GS, Habermann TM et al (2015) A comprehensive review of lenalidomide therapy for B-cell non-Hodgkin lymphoma. Ann Oncol Off J Eur Soc Med Oncol 26:1667–1677. https://doi.org/10.1093/annonc/mdv102

    Article  CAS  Google Scholar 

  75. Palma M, Hansson L, Mulder TA et al (2018) Lenalidomide as immune adjuvant to a dendritic cell vaccine in chronic lymphocytic leukemia patients. Eur J Haematol 101:68–77. https://doi.org/10.1111/ejh.13065

    Article  CAS  PubMed  Google Scholar 

  76. Cox MC, Battella S, La Scaleia R et al (2015) Tumor-associated and immunochemotherapy-dependent long-term alterations of the peripheral blood NK cell compartment in DLBCL patients. Oncoimmunology 4:1–12. https://doi.org/10.4161/2162402X.2014.990773

    Article  CAS  Google Scholar 

Download references

Funding

Some of the studies mentioned in this review were funded by Association for Research against Cancer (AIRC IG16891).The funders had no role in the preparation of this review.

Author information

Authors and Affiliations

Authors

Contributions

MCC and SMS conceptualized the review. All authors contributed to the writing and editing of the review. All authors approved the final version.

Corresponding authors

Correspondence to Caterina Lapenta or Stefano M. Santini.

Ethics declarations

Conflict of interest

Stefano M. Santini received research funding from Celgene. All other authors declare that they have no conflict of interest.

Ethical approval and ethical standards

Not applicable. This is a review and not an original paper.

Informed consent

Not applicable. This is a review and not an original paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, M.C., Lapenta, C. & Santini, S.M. Advances and perspectives of dendritic cell-based active immunotherapies in follicular lymphoma. Cancer Immunol Immunother 69, 913–925 (2020). https://doi.org/10.1007/s00262-020-02577-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02577-w

Keywords

Navigation