Skip to main content
Log in

Effect of the simultaneous administration of glucocorticoids and IL-15 on human NK cell phenotype, proliferation and function

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

We have previously reported a synergistic effect between hydrocortisone (HC) and IL-15 on promoting natural killer (NK) cell expansion and function. In the present study, we extend our findings to methylprednisolone (MeP) and dexamethasone (Dex), thus ascribing to glucocorticoids (GCs) a general feature as positive regulators of IL-15-mediated effects on NK cells. We demonstrate that each GC when combined with IL-15 in cultures of peripheral blood (PB)-derived CD56+ cells induces increased expansion of CD56+CD3 cells displaying high cytolytic activity, IFN-γ production potential and activating receptor expression, including NKp30, NKp44, NKp46, 2B4, NKG2D and DNAM-1. Furthermore, GCs protected NK cells from IL-15-induced cell death. The combination of IL-15 with GCs favored the expansion of a relatively more immature CD16low/neg NK cell population, with high expression of NKG2A and CD94, and significantly lower expression of KIR (CD158a and CD158b) and CD57, compared to IL-15 alone. IL-15-expanded NK cells, in the presence or absence of GCs, did not express CD62L, CXCR1 or CCR7. However, the presence of GCs significantly increased the density of CXCR3 and induced strong CXCR4 expression on the surface of NK cells. Our data indicate that IL-15/GC-expanded NK cells, apart from their increased proliferation rate, retain their functional integrity and exhibit a migratory potential rendering them useful for adoptive transfer in NK cell-based cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Papamichail M, Perez SA, Gritzapis AD, Baxevanis CN (2004) Natural killer lymphocytes: biology, development, and function. Cancer Immunol Immunother 53:176–186

    Article  PubMed  Google Scholar 

  2. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510

    Article  PubMed  CAS  Google Scholar 

  3. Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20:123–137

    Article  PubMed  CAS  Google Scholar 

  4. Sun JC, Lopez-Verges S, Kim CC, Derisi JL, Lanier LL (2011) NK cells and immune “memory”. J Immunol 186:1891–1897

    Article  PubMed  CAS  Google Scholar 

  5. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA (2001) Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97:3146–3151

    Article  PubMed  CAS  Google Scholar 

  6. Chan A, Hong DL, Atzberger A, Kollnberger S, Filer AD, Buckley CD, McMichael A, Enver T, Bowness P (2007) CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J Immunol 179:89–94

    PubMed  CAS  Google Scholar 

  7. Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, Bjorklund AT, Flodstrom-Tullberg M, Michaelsson J, Rottenberg ME, Guzman CA, Ljunggren HG, Malmberg KJ (2010) Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 116:3853–3864

    Article  PubMed  Google Scholar 

  8. Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL (2010) CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 116:3865–3874

    Article  PubMed  CAS  Google Scholar 

  9. Arai S, Klingemann HG (2005) Natural killer cells: can they be useful as adoptive immunotherapy for cancer? Expert Opin Biol Ther 5:163–172

    Article  PubMed  CAS  Google Scholar 

  10. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057

    Article  PubMed  CAS  Google Scholar 

  11. Ashwell JD, Lu FW, Vacchio MS (2000) Glucocorticoids in T cell development and function*. Annu Rev Immunol 18:309–345

    Article  PubMed  CAS  Google Scholar 

  12. Rook GA (1999) Glucocorticoids and immune function. Baillieres Best Pract Res Clin Endocrinol Metab 13:567–581

    Article  PubMed  CAS  Google Scholar 

  13. Cohen JJ, Duke RC (1984) Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol 132:38–42

    PubMed  CAS  Google Scholar 

  14. Herold MJ, McPherson KG, Reichardt HM (2006) Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci 63:60–72

    Article  PubMed  CAS  Google Scholar 

  15. Perandones CE, Illera VA, Peckham D, Stunz LL, Ashman RF (1993) Regulation of apoptosis in vitro in mature murine spleen T cells. J Immunol 151:3521–3529

    PubMed  CAS  Google Scholar 

  16. Almawi WY, Beyhum HN, Rahme AA, Rieder MJ (1996) Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Biol 60:563–572

    PubMed  CAS  Google Scholar 

  17. Cronstein BN, Kimmel SC, Levin RI, Martiniuk F, Weissmann G (1992) A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci USA 89:9991–9995

    Article  PubMed  CAS  Google Scholar 

  18. Bischof F, Melms A (1998) Glucocorticoids inhibit CD40 ligand expression of peripheral CD4+ lymphocytes. Cell Immunol 187:38–44

    Article  PubMed  CAS  Google Scholar 

  19. Baus E, Andris F, Dubois PM, Urbain J, Leo O (1996) Dexamethasone inhibits the early steps of antigen receptor signalling in activated T lymphocytes. J Immunol 156:4555–4561

    PubMed  CAS  Google Scholar 

  20. Zacharchuk CM, Mercep M, Chakraborti PK, Simons SS Jr, Ashwell JD (1990) Programmed T lymphocyte death. Cell activation- and steroid-induced pathways are mutually antagonistic. J Immunol 145:4037–4045

    PubMed  CAS  Google Scholar 

  21. Franchimont D, Galon J, Vacchio MS, Fan S, Visconti R, Frucht DM, Geenen V, Chrousos GP, Ashwell JD, O’Shea JJ (2002) Positive effects of glucocorticoids on T cell function by up-regulation of IL-7 receptor alpha. J Immunol 168:2212–2218

    PubMed  CAS  Google Scholar 

  22. Wiegers GJ, Labeur MS, Stec IE, Klinkert WE, Holsboer F, Reul JM (1995) Glucocorticoids accelerate anti-T cell receptor-induced T cell growth. J Immunol 155:1893–1902

    PubMed  CAS  Google Scholar 

  23. Hinrichs CS, Palmer DC, Rosenberg SA, Restifo NP (2005) Glucocorticoids do not inhibit antitumor activity of activated CD8+ T cells. J Immunother 28:517–524

    Article  PubMed  CAS  Google Scholar 

  24. Naito M, Itoh K, Komatsu N, Yamashita Y, Shirakusa T, Yamada A, Moriya F, Ayatuka H, Mohamed ER, Matsuoka K, Noguchi M (2008) Dexamethasone did not suppress immune boosting by personalized peptide vaccination for advanced prostate cancer patients. Prostate 68:1753–1762

    Article  PubMed  CAS  Google Scholar 

  25. Perez SA, Mahaira LG, Demirtzoglou FJ, Sotiropoulou PA, Ioannidis P, Iliopoulou EG, Gritzapis AD, Sotiriadou NN, Baxevanis CN, Papamichail M (2005) A potential role for hydrocortisone in the positive regulation of IL-15-activated NK-cell proliferation and survival. Blood 106:158–166

    Article  PubMed  CAS  Google Scholar 

  26. Iliopoulou EG, Kountourakis P, Karamouzis MV, Doufexis D, Ardavanis A, Baxevanis CN, Rigatos G, Papamichail M, Perez SA (2010) A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother 59:1781–1789

    Article  PubMed  Google Scholar 

  27. Salagianni M, Lekka E, Moustaki A, Iliopoulou EG, Baxevanis CN, Papamichail M, Perez SA (2011) NK Cell adoptive transfer combined with ontak-mediated regulatory T cell elimination induces effective adaptive antitumor immune responses. J Immunol 186:3327–3335

    Article  PubMed  CAS  Google Scholar 

  28. Quah BJ, Warren HS, Parish CR (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc 2:2049–2056

    Article  PubMed  CAS  Google Scholar 

  29. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML (2001) A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177–187

    Article  PubMed  CAS  Google Scholar 

  30. Fehniger TA, Shah MH, Turner MJ, VanDeusen JB, Whitman SP, Cooper MA, Suzuki K, Wechser M, Goodsaid F, Caligiuri MA (1999) Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response. J Immunol 162:4511–4520

    PubMed  CAS  Google Scholar 

  31. Vitale C, Chiossone L, Cantoni C, Morreale G, Cottalasso F, Moretti S, Pistorio A, Haupt R, Lanino E, Dini G, Moretta L, Mingari MC (2004) The corticosteroid-induced inhibitory effect on NK cell function reflects down-regulation and/or dysfunction of triggering receptors involved in natural cytotoxicity. Eur J Immunol 34:3028–3038

    Article  PubMed  CAS  Google Scholar 

  32. Chiossone L, Vitale C, Cottalasso F, Moretti S, Azzarone B, Moretta L, Mingari MC (2007) Molecular analysis of the methylprednisolone-mediated inhibition of NK-cell function: evidence for different susceptibility of IL-2- versus IL-15-activated NK cells. Blood 109:3767–3775

    Article  PubMed  CAS  Google Scholar 

  33. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502

    Article  PubMed  CAS  Google Scholar 

  34. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and co receptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223

    Article  PubMed  CAS  Google Scholar 

  35. Romagnani C, Juelke K, Falco M, Morandi B, D’Agostino A, Costa R, Ratto G, Forte G, Carrega P, Lui G, Conte R, Strowig T, Moretta A, Munz C, Thiel A, Moretta L, Ferlazzo G (2007) CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 178:4947–4955

    PubMed  CAS  Google Scholar 

  36. Yu J, Mao HC, Wei M, Hughes T, Zhang J, Park IK, Liu S, McClory S, Marcucci G, Trotta R, Caligiuri MA (2010) CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood 115:274–281

    Article  PubMed  CAS  Google Scholar 

  37. Berahovich RD, Lai NL, Wei Z, Lanier LL, Schall TJ (2006) Evidence for NK cell subsets based on chemokine receptor expression. J Immunol 177:7833–7840

    PubMed  CAS  Google Scholar 

  38. Carson WE, Fehniger TA, Caligiuri MA (1997) CD56bright natural killer cell subsets: characterization of distinct functional responses to interleukin-2 and the c-kit ligand. Eur J Immunol 27:354–360

    Article  PubMed  CAS  Google Scholar 

  39. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640

    Article  PubMed  CAS  Google Scholar 

  40. Perez SA, Sotiropoulou PA, Gkika DG, Mahaira LG, Niarchos DK, Gritzapis AD, Kavalakis YG, Antsaklis AI, Baxevanis CN, Papamichail M (2003) A novel myeloid-like NK cell progenitor in human umbilical cord blood. Blood 101:3444–3450

    Article  PubMed  CAS  Google Scholar 

  41. Perez SA, Mahaira LG, Sotiropoulou PA, Gritzapis AD, Iliopoulou EG, Niarchos DK, Cacoullos NT, Kavalakis YG, Antsaklis AI, Sotiriadou NN, Baxevanis CN, Papamichail M (2006) Effect of IL-21 on NK cells derived from different umbilical cord blood populations. Int Immunol 18:49–58

    Article  PubMed  CAS  Google Scholar 

  42. Vitale C, Cottalasso F, Montaldo E, Moretta L, Mingari MC (2008) Methylprednisolone induces preferential and rapid differentiation of CD34+ cord blood precursors toward NK cells. Int Immunol 20:565–575

    Article  PubMed  CAS  Google Scholar 

  43. Grzywacz B, Kataria N, Blazar BR, Miller JS, Verneris MR (2011) Natural killer cell differentiation by myeloid progenitors. Blood 117:3548–3558

    Article  PubMed  CAS  Google Scholar 

  44. Berg M, Lundqvist A, McCoy P Jr, Samsel L, Fan Y, Tawab A, Childs R (2009) Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy 11:341–355

    Article  PubMed  CAS  Google Scholar 

  45. Huenecke S, Zimmermann SY, Kloess S, Esser R, Brinkmann A, Tramsen L, Koenig M, Erben S, Seidl C, Tonn T, Eggert A, Schramm A, Bader P, Klingebiel T, Lehrnbecher T, Passweg JR, Soerensen J, Schwabe D, Koehl U (2010) IL-2-driven regulation of NK cell receptors with regard to the distribution of CD16+ and CD16- subpopulations and in vivo influence after haploidentical NK cell infusion. J Immunother 33:200–210

    Article  PubMed  CAS  Google Scholar 

  46. Juelke K, Killig M, Luetke-Eversloh M, Parente E, Gruen J, Morandi B, Ferlazzo G, Thiel A, Schmitt-Knosalla I, Romagnani C (2010) CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 116:1299–1307

    Article  PubMed  CAS  Google Scholar 

  47. Beider K, Nagler A, Wald O, Franitza S, Dagan-Berger M, Wald H, Giladi H, Brocke S, Hanna J, Mandelboim O, Darash-Yahana M, Galun E, Peled A (2003) Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice. Blood 102:1951–1958

    Article  PubMed  CAS  Google Scholar 

  48. Curnow SJ, Wloka K, Faint JM, Amft N, Cheung CM, Savant V, Lord J, Akbar AN, Buckley CD, Murray PI, Salmon M (2004) Topical glucocorticoid therapy directly induces up-regulation of functional CXCR4 on primed T lymphocytes in the aqueous humor of patients with uveitis. J Immunol 172:7154–7161

    PubMed  CAS  Google Scholar 

  49. Wendel M, Galani IE, Suri-Payer E, Cerwenka A (2008) Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res 68:8437–8445

    Article  PubMed  CAS  Google Scholar 

  50. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumour cells and their microenvironment. Blood 107:1761–1767

    Article  PubMed  CAS  Google Scholar 

  51. Muller V, Alix-Panabieres C, Pantel K (2010) Insights into minimal residual disease in cancer patients: implications for anti-cancer therapies. Eur J Cancer 46:1189–1197

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a donation from OPAP SA to M.P.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia A. Perez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3964 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moustaki, A., Argyropoulos, K.V., Baxevanis, C.N. et al. Effect of the simultaneous administration of glucocorticoids and IL-15 on human NK cell phenotype, proliferation and function. Cancer Immunol Immunother 60, 1683–1695 (2011). https://doi.org/10.1007/s00262-011-1067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1067-6

Keywords

Navigation