Skip to main content

Advertisement

Log in

Intratumoral delivery of vector mediated IL-2 in combination with vaccine results in enhanced T cell avidity and anti-tumor activity

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Systemic IL-2 is currently employed in the therapy of several tumor types, but at the price of often severe toxicities. Local vector mediated delivery of IL-2 at the tumor site may enhance local effector cell activity while reducing toxicity. To examine this, a model using CEA-transgenic mice bearing established CEA expressing tumors was employed. The vaccine regimen was a s.c. prime vaccination with recombinant vaccinia (rV) expressing transgenes for CEA and a triad of costimulatory molecules (TRICOM) followed by i.t. boosting with rF-CEA/TRICOM. The addition of intratumoral (i.t.) delivery of IL-2 via a recombinant fowlpox (rF) IL-2 vector greatly enhanced anti-tumor activity of a recombinant vaccine, resulting in complete tumor regression in 70–80% of mice. The anti-tumor activity was shown to be dependent on CD8+ cells and NK1.1+. Cellular immune assays revealed that the addition of rF-IL-2 to the vaccination therapy enhanced CEA-specific tetramer+ cell numbers, cytokine release and CTL lysis of CEA+ targets. Moreover, tumor-bearing mice vaccinated with the CEA/TRICOM displayed an antigen cascade, i.e., CD8+ T cell responses to two other antigens expressed on the tumor and not the vaccine: wild-type p53 and endogenous retroviral antigen gp70. Mice receiving rF-IL-2 during vaccination demonstrated higher avidity CEA-specific, as well as higher avidity gp70-specific, CD8+ T cells when compared with mice vaccinated without rF-IL-2. These studies demonstrate for the first time that the level and avidity of antigen specific CTL, as well as the therapeutic outcome can be improved with the use of i.t. rF-IL-2 with vaccine regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

rV:

Replication-competent recombinant vaccinia

FP-WT:

Fowlpox wild-type

rF:

Replication-defective recombinant fowlpox

TRICOM:

Triad of costimulatory molecules (B7-1, ICAM-1 and LFA-3)

IL-2:

Interleukin-2

CEA:

Carcinoembryonic antigen

GM-CSF:

Granulocyte macrophage colony-stimulating factor

TAA:

Tumor-associated antigen

TIL:

Tumor-infiltrating cell

i.t.:

Intratumoral (ly)

s.c.:

Subcutaneous (ly)

i.p.:

Intraperitoneal (ly)

APC:

Antigen-presenting cells

Tg:

Transgenic

CTL:

Cytotoxic T lymphocyte

DC:

Dendritic cells

References

  1. Aarts WM, Schlom J, Hodge JW (2002) Vector-based vaccine/cytokine combination therapy to enhance induction of immune responses to a self-antigen and antitumor activity. Cancer Res 62:5770

    PubMed  CAS  Google Scholar 

  2. Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW (2004) External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64:4328

    Article  PubMed  CAS  Google Scholar 

  3. Chen B, Timiryasova TM, Andres ML, Kajioka EH, Dutta-Roy R, Gridley DS, Fodor I (2000) Evaluation of combined vaccinia virus-mediated antitumor gene therapy with p53, IL-2, and IL-12 in a glioma model. Cancer Gene Ther 7:1437

    Article  PubMed  CAS  Google Scholar 

  4. Dillman RO (1999) What to do with IL-2? Cancer Biother Radiopharm 14:423

    Article  PubMed  CAS  Google Scholar 

  5. Disis ML, Bernhard H, Shiota FM, Hand SL, Gralow JR, Huseby ES, Gillis S, Cheever MA (1996) Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood 88:202

    PubMed  CAS  Google Scholar 

  6. Eades-Perner AM, van der Putten H, Hirth A, Thompson J, Neumaier M, von Kleist S, Zimmermann W (1994) Mice transgenic for the human carcinoembryonic antigen gene maintain its spatiotemporal expression pattern. Cancer Res 54:4169

    PubMed  CAS  Google Scholar 

  7. el-Shami K, Tirosh B, Bar-Haim E, Carmon L, Vadai E, Fridkin M, Feldman M, Eisenbach L (1999) MHC class I-restricted epitope spreading in the context of tumor rejection following vaccination with a single immunodominant CTL epitope. Eur J Immunol 29:3295

    Article  PubMed  CAS  Google Scholar 

  8. Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, Bieler JG, Emens LA, Reilly RT, Jaffee EM (2005) Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med 201:1591

    Article  PubMed  CAS  Google Scholar 

  9. Esquivel F, Yewdell J, Bennink J (1992) RMA/S cells present endogenously synthesized cytosolic proteins to class I-restricted cytotoxic T lymphocytes. J Exp Med 175:163

    Article  PubMed  CAS  Google Scholar 

  10. Evans DE, Weinberg AD (2003) Boosting T cell costimulation in cancer: the possibilities seem endless. Int Rev Immunol 22:173

    Article  PubMed  CAS  Google Scholar 

  11. Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC (1995) Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 13:688

    PubMed  CAS  Google Scholar 

  12. Galanis E, Burch PA, Richardson RL, Lewis B, Pitot HC, Frytak S, Spier C, Akporiaye ET, Peethambaram PP, Kaur JS, Okuno SH, Unni KK, Rubin J (2004) Intratumoral administration of a 1,2-dimyristyloxypropyl-3-dimethylhydroxyethyl ammonium bromide/dioleoylphosphatidylethanolamine formulation of the human interleukin-2 gene in the treatment of metastatic renal cell carcinoma. Cancer 101:2557

    Article  PubMed  CAS  Google Scholar 

  13. Germeau C, Ma W, Schiavetti F, Lurquin C, Henry E, Vigneron N, Brasseur F, Lethe B, De Plaen E, Velu T, Boon T, Coulie PG (2005) High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens. J Exp Med 201:241

    Article  PubMed  CAS  Google Scholar 

  14. Greiner JW, Zeytin H, Anver MR, Schlom J (2002) Vaccine-based therapy directed against carcinoembryonic antigen demonstrates antitumor activity on spontaneous intestinal tumors in the absence of autoimmunity. Cancer Res 62:6944

    PubMed  CAS  Google Scholar 

  15. Zarour HM, Zarour AD, Finn OJ, Storkus W (2003) Tumor antigens. In: Kufe DW (ed) Cancer medicine. BC Decker Inc, Hamilton, p 195

  16. Hersh EM, Stopeck AT (1997) Advances in the biological therapy and gene therapy of malignant disease. Clin Cancer Res 3:2623

    PubMed  CAS  Google Scholar 

  17. Hilburger Ryan M, Abrams SI (2001) Characterization of CD8+ cytotoxic T lymphocyte/tumor cell interactions reflecting recognition of an endogenously expressed murine wild-type p53 determinant. Cancer Immunol Immunother 49:603

    Article  PubMed  CAS  Google Scholar 

  18. Hodge JW, McLaughlin JP, Kantor JA, Schlom J (1997) Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine 15:759

    Article  PubMed  CAS  Google Scholar 

  19. Hodge JW, Sabzevari H, Yafal AG, Gritz L, Lorenz MG, Schlom J (1999) A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res 59:5800

    PubMed  CAS  Google Scholar 

  20. Hodge JW, Grosenbach DW, Aarts WM, Poole DJ, Schlom J (2003) Vaccine therapy of established tumors in the absence of autoimmunity. Clin Cancer Res 9:1837

    PubMed  CAS  Google Scholar 

  21. Jackaman C, Bundell CS, Kinnear BF, Smith AM, Filion P, van Hagen D, Robinson BW, Nelson DJ (2003) IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol 171:5051

    PubMed  CAS  Google Scholar 

  22. Jourdier TM, Moste C, Bonnet MC, Delisle F, Tafani JP, Devauchelle P, Tartaglia J, Moingeon P (2003) Local immunotherapy of spontaneous feline fibrosarcomas using recombinant poxviruses expressing interleukin 2 (IL2). Gene Ther 10:2126

    Article  PubMed  CAS  Google Scholar 

  23. Kalus RM, Kantor JA, Gritz L, Gomez Yafal A, Mazzara GP, Schlom J, Hodge JW (1999) The use of combination vaccinia vaccines and dual-gene vaccinia vaccines to enhance antigen-specific T-cell immunity via T-cell costimulation. Vaccine 17:893

    Article  PubMed  CAS  Google Scholar 

  24. Kass E, Parker J, Schlom J, Greiner JW (2000) Comparative studies of the effects of recombinant GM-CSF and GM-CSF administered via a poxvirus to enhance the concentration of antigen-presenting cells in regional lymph nodes. Cytokine 12:960

    Article  PubMed  CAS  Google Scholar 

  25. Kass E, Schlom J, Thompson J, Guadagni F, Graziano P, Greiner JW (1999) Induction of protective host immunity to carcinoembryonic antigen (CEA), a self-antigen in CEA transgenic mice, by immunizing with a recombinant vaccinia-CEA virus. Cancer Res 59:676

    PubMed  CAS  Google Scholar 

  26. Kass E, Panicali DL, Mazzara G, Schlom J, Greiner JW (2001) Granulocyte/macrophage-colony stimulating factor produced by recombinant avian poxviruses enriches the regional lymph nodes with antigen-presenting cells and acts as an immunoadjuvant. Cancer Res 61:206

    PubMed  CAS  Google Scholar 

  27. Kielian T, Nagai E, Ikubo A, Rasmussen CA, Suzuki T (1999) Granulocyte/macrophage-colony-stimulating factor released by adenovirally transduced CT26 cells leads to the local expression of macrophage inflammatory protein 1alpha and accumulation of dendritic cells at vaccination sites in vivo. Cancer Immunol Immunother 48:123

    Article  PubMed  CAS  Google Scholar 

  28. Kudo-Saito C, Schlom J, Hodge JW (2004) Intratumoral vaccination and diversified subcutaneous/intratumoral vaccination with recombinant poxviruses encoding a tumor antigen and multiple costimulatory molecules. Clin Cancer Res 10:1090

    Article  PubMed  CAS  Google Scholar 

  29. Kudo-Saito C, Schlom J, Camphausen K, Coleman CN, Hodge JW (2005) The requirement of multimodal therapy (vaccine, local tumor radiation, and reduction of suppressor cells) to eliminate established tumors. Clin Cancer Res 11:4533

    Article  PubMed  CAS  Google Scholar 

  30. Kudo-Saito C, Schlom J, Hodge JW (2005) Induction of an antigen cascade by diversified subcutaneous/intratumoral vaccination is associated with antitumor responses. Clin Cancer Res 11:2416

    Article  PubMed  CAS  Google Scholar 

  31. Lacabanne V, Viguier M, Guillet JG, Choppin J (1996) A wild-type p53 cytotoxic T cell epitope is presented by mouse hepatocarcinoma cells. Eur J Immunol 26:2635

    Article  PubMed  CAS  Google Scholar 

  32. Liu K, Abrams SI (2003) Alterations in Fas expression are characteristic of, but not solely responsible for, enhanced metastatic competence. J Immunol 170:5973

    PubMed  CAS  Google Scholar 

  33. Liu M, Acres B, Balloul JM, Bizouarne N, Paul S, Slos P, Squiban P (2004) Gene-based vaccines and immunotherapeutics. Proc Natl Acad Sci USA 101(Suppl 2):14567

    Article  PubMed  CAS  Google Scholar 

  34. Maloy KJ, Powrie F (2005) Fueling regulation: IL-2 keeps CD4+ Treg cells fit. Nat Immunol 6:1071

    Article  PubMed  CAS  Google Scholar 

  35. McKee MD, Roszkowski JJ, Nishimura MI (2005) T cell avidity and tumor recognition: implications and therapeutic strategies. J Transl Med 3:35

    Article  PubMed  CAS  Google Scholar 

  36. McLaughlin JP, Schlom J, Kantor JA, Greiner JW (1996) Improved immunotherapy of a recombinant carcinoembryonic antigen vaccinia vaccine when given in combination with interleukin-2. Cancer Res 56:2361

    PubMed  CAS  Google Scholar 

  37. Morse MA (2001) Technology evaluation: CEA-TRICOM, Therion Biologics Corp. Curr Opin Mol Ther 3:407

    PubMed  CAS  Google Scholar 

  38. Moss B (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci USA 93:11341

    Article  PubMed  CAS  Google Scholar 

  39. Murphy WJ, Welniak L, Back T, Hixon J, Subleski J, Seki N, Wigginton JM, Wilson SE, Blazar BR, Malyguine AM, Sayers TJ, Wiltrout RH (2003) Synergistic anti-tumor responses after administration of agonistic antibodies to CD40 and IL-2: coordination of dendritic and CD8+ cell responses. J Immunol 170:2727

    PubMed  CAS  Google Scholar 

  40. Pantuck AJ, van Ophoven A, Gitlitz BJ, Tso CL, Acres B, Squiban P, Ross ME, Belldegrun AS, Figlin RA (2004) Phase I trial of antigen-specific gene therapy using a recombinant vaccinia virus encoding MUC-1 and IL-2 in MUC-1-positive patients with advanced prostate cancer. J Immunother 27:240

    Article  PubMed  CAS  Google Scholar 

  41. Pilon SA, Kelly C, Wei WZ (2003) Broadening of epitope recognition during immune rejection of ErbB-2-positive tumor prevents growth of ErbB-2-negative tumor. J Immunol 170:1202

    PubMed  CAS  Google Scholar 

  42. Qin H, Valentino J, Manna S, Tripathi PK, Bhattacharya-Chatterjee M, Foon KA, O’Malley BW Jr, Chatterjee SK (2001) Gene therapy for head and neck cancer using vaccinia virus expressing IL-2 in a murine model, with evidence of immune suppression. Mol Ther 4:551

    Article  PubMed  CAS  Google Scholar 

  43. Robbins PF, Kantor JA, Salgaller M, Hand PH, Fernsten PD, Schlom J (1991) Transduction and expression of the human carcinoembryonic antigen gene in a murine colon carcinoma cell line. Cancer Res 51:3657

    PubMed  CAS  Google Scholar 

  44. Rochlitz C, Figlin R, Squiban P, Salzberg M, Pless M, Herrmann R, Tartour E, Zhao Y, Bizouarne N, Baudin M, Acres B (2003) Phase I immunotherapy with a modified vaccinia virus (MVA) expressing human MUC1 as antigen-specific immunotherapy in patients with MUC1-positive advanced cancer. J Gene Med 5:690

    Article  PubMed  CAS  Google Scholar 

  45. Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH, White DE (1994) Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. Jama 271:907

    Article  PubMed  CAS  Google Scholar 

  46. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Topalian SL, Sherry RM, Restifo NP, Wunderlich JR, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, Gritz L, Panicali DL, White DE (2003) Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma. Clin Cancer Res 9:2973

    PubMed  CAS  Google Scholar 

  47. Scholl S, Squiban P, Bizouarne N, Baudin M, Acres B, Von Mensdorff-Pouilly S, Shearer M, Beuzeboc P, Van Belle S, Uzielly B, Pouillart P, Taylor-Papadimitriou J, Miles D (2003) Metastatic breast tumour regression following treatment by a gene-modified vaccinia virus expressing MUC1 and IL-2. J Biomed Biotechnol 2003:194

    Article  PubMed  Google Scholar 

  48. Sivanandham M, Scoggin SD, Tanaka N, Wallack MK (1994) Therapeutic effect of a vaccinia colon oncolysate prepared with interleukin-2-gene encoded vaccinia virus studied in a syngeneic CC-36 murine colon hepatic metastasis model. Cancer Immunol Immunother 38:259

    PubMed  CAS  Google Scholar 

  49. Snyder JT, Alexander-Miller MA, Berzofskyl JA, Belyakov IM (2003) Molecular mechanisms and biological significance of CTL avidity. Curr HIV Res 1:287

    Article  PubMed  CAS  Google Scholar 

  50. Wigginton JM, Komschlies KL, Back TC, Franco JL, Brunda MJ, Wiltrout RH (1996) Administration of interleukin 12 with pulse interleukin 2 and the rapid and complete eradication of murine renal carcinoma. J Natl Cancer Inst 88:38

    Article  PubMed  CAS  Google Scholar 

  51. Yang JC, Perry-Lalley D (2000) The envelope protein of an endogenous murine retrovirus is a tumor-associated T-cell antigen for multiple murine tumors. J Immunother 23:177

    Article  PubMed  CAS  Google Scholar 

  52. Yang JC, Sherry RM, Steinberg SM, Topalian SL, Schwartzentruber DJ, Hwu P, Seipp CA, Rogers-Freezer L, Morton KE, White DE, Liewehr DJ, Merino MJ, Rosenberg SA (2003) Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol 21:3127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marion Taylor for excellent technical assistance. We thank Debra Weingarten for her editorial assistance in the preparation of this manuscript. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Schlom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudo-Saito, C., Garnett, C.T., Wansley, E.K. et al. Intratumoral delivery of vector mediated IL-2 in combination with vaccine results in enhanced T cell avidity and anti-tumor activity. Cancer Immunol Immunother 56, 1897–1910 (2007). https://doi.org/10.1007/s00262-007-0332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0332-1

Keywords

Navigation