Skip to main content
Log in

Cholinergic PET imaging in infections and inflammation using 11C-donepezil and 18F-FEOBV

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Introduction

Immune cells utilize acetylcholine as a paracrine-signaling molecule. Many white blood cells express components of the cholinergic signaling pathway, and these are up-regulated when immune cells are activated. However, in vivo molecular imaging of cholinergic signaling in the context of inflammation has not previously been investigated.

Methods

We performed positron emission tomography (PET) using the glucose analogue 18F-FDG, and 11C-donepezil and 18F-FEOBV, markers of acetylcholinesterase and the vesicular acetylcholine transporter, respectively. Mice were inoculated subcutaneously with Staphylococcus aureus, and PET scanned at 24, 72, 120, and 144 h post-inoculation. Four pigs with post-operative abscesses were also imaged. Finally, we present initial data from human patients with infections, inflammation, and renal and lung cancer.

Results

In mice, the FDG uptake in abscesses peaked at 24 h and remained stable. The 11C-donepezil and 18F-FEOBV uptake displayed progressive increase, and at 120–144 h was nearly at the FDG level. Moderate 11C-donepezil and slightly lower 18F-FEOBV uptake were seen in pig abscesses. PCR analyses suggested that the 11C-donepezil signal in inflammatory cells is derived from both acetylcholinesterase and sigma-1 receptors. In humans, very high 11C-donepezil uptake was seen in a lobar pneumonia and in peri-tumoral inflammation surrounding a non-small cell lung carcinoma, markedly superseding the 18F-FDG uptake in the inflammation. In a renal clear cell carcinoma no 11C-donepezil uptake was seen.

Discussion

The time course of cholinergic tracer accumulation in murine abscesses was considerably different from 18F-FDG, demonstrating in the 11C-donepezil and 18F-FEOBV image distinct aspects of immune modulation. Preliminary data in humans strongly suggest that 11C-donepezil can exhibit more intense accumulation than 18F-FDG at sites of chronic inflammation. Cholinergic PET imaging may therefore have potential applications for basic research into cholinergic mechanisms of immune modulation, but also clinical applications for diagnosing infections, inflammatory disorders, and cancer inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

CFU:

Colony forming unit

MRI:

Magnetic Resonance Imaging

PET:

Positron Emission Tomography

PMN:

Polymorph-nuclear cells

ROI:

2D region of interest

SPECT:

Single photon emission computed tomography

SUV:

Standardized uptake value

VAChT:

Vesicular acetylcholine transporter

VOI:

3D volume of interest

WBC:

White blood cells

References

  1. Sobic-Saranovic DP, Grozdic IT, Videnovic-Ivanov J, Vucinic-Mihailovic V, Artiko VM, Saranovic DZ, et al. Responsiveness of FDG PET/CT to treatment of patients with active chronic sarcoidosis. Clin Nucl Med. 2013;38:516–21. doi:10.1097/RLU.0b013e31828731f5.

    Article  PubMed  Google Scholar 

  2. Bleeker-Rovers CP, Vos FJ, Mudde AH, Dofferhoff AS, de Geus-Oei LF, Rijnders AJ, et al. A prospective multi-centre study of the value of FDG-PET as part of a structured diagnostic protocol in patients with fever of unknown origin. Eur J Nucl Med Mol Imaging. 2007;34:694–703. doi:10.1007/s00259-006-0295-z.

    Article  PubMed  Google Scholar 

  3. Lehmann P, Buchtala S, Achajew N, Haerle P, Ehrenstein B, Lighvani H, et al. 18F-FDG PET as a diagnostic procedure in large vessel vasculitis-a controlled, blinded re-examination of routine PET scans. Clin Rheumatol. 2011;30:37–42. doi:10.1007/s10067-010-1598-9.

    Article  PubMed  Google Scholar 

  4. Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647–58. doi:10.2967/jnumed.112.112524.

    Article  PubMed  Google Scholar 

  5. Bensinger SJ, Christofk HR. New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol. 2012;23:352–61. doi:10.1016/j.semcdb.2012.02.003.

    Article  CAS  PubMed  Google Scholar 

  6. Kawashima K, Fujii T, Moriwaki Y, Misawa H. Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci. 2012;91:1027–32. doi:10.1016/j.lfs.2012.05.006.

    Article  CAS  PubMed  Google Scholar 

  7. Kawashima K, Fujii T. Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Front Biosci. 2004;9:2063–85.

    Article  CAS  PubMed  Google Scholar 

  8. Szelenyi JG, Bartha E, Hollan SR. Acetylcholinesterase activity of lymphocytes: an enzyme characteristic of T-cells. Br J Haematol. 1982;50:241–5.

    Article  CAS  PubMed  Google Scholar 

  9. Tayebati SK, El-Assouad D, Ricci A, Amenta F. Immunochemical and immunocytochemical characterization of cholinergic markers in human peripheral blood lymphocytes. J Neuroimmunol. 2002;132:147–55.

    Article  CAS  PubMed  Google Scholar 

  10. Fujii TWY, Fujimoto K, Kawashima K. Expression of acetylcholine in lymphocytes and modulation of an independent lymphocytic cholinergic activity by immunological stimulation. Biog Amine. 2003;17:373–86.

    Article  CAS  Google Scholar 

  11. Mori T, Maeda J, Shimada H, Higuchi M, Shinotoh H, Ueno S, et al. Molecular imaging of dementia. Psychogeriatrics Off J Jpn Psychogeriatr Soc. 2012;12:106–14. doi:10.1111/j.1479-8301.2012.00409.x.

    Article  Google Scholar 

  12. Gjerloff T, Jakobsen S, Nahimi A, Munk OL, Bender D, Alstrup AK, et al. In vivo imaging of human acetylcholinesterase density in peripheral organs using 11C-donepezil: dosimetry, biodistribution, and kinetic analyses. J Nucl Med. 2014;55:1818–24. doi:10.2967/jnumed.114.143859.

    Article  PubMed  Google Scholar 

  13. Gjerloff T, Fedorova T, Knudsen K, Munk OL, Nahimi A, Jacobsen S, et al. Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with 11C-donepezil PET. Brain. 2015;138:653–63. doi:10.1093/brain/awu369.

    Article  PubMed  Google Scholar 

  14. Petrou M, Frey KA, Kilbourn MR, Scott PJ, Raffel DM, Bohnen NI, et al. In vivo imaging of human cholinergic nerve terminals with (−)-5-(18)F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med. 2014;55:396–404. doi:10.2967/jnumed.113.124792.

    Article  CAS  PubMed  Google Scholar 

  15. Pellegrino D, Bonab AA, Dragotakes SC, Pitman JT, Mariani G, Carter EA. Inflammation and infection: imaging properties of 18F-FDG-labeled white blood cells versus 18F-FDG. J Nucl Med. 2005;46:1522–30.

    CAS  PubMed  Google Scholar 

  16. Nippe N, Varga G, Holzinger D, Loffler B, Medina E, Becker K, et al. Subcutaneous infection with S. aureus in mice reveals association of resistance with influx of neutrophils and Th2 response. J Invest Dermatol. 2011;131:125–32. doi:10.1038/jid.2010.282.

    Article  CAS  PubMed  Google Scholar 

  17. Molne L, Verdrengh M, Tarkowski A. Role of neutrophil leukocytes in cutaneous infection caused by Staphylococcus aureus. Infect Immun. 2000;68:6162–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McLoughlin RM, Solinga RM, Rich J, Zaleski KJ, Cocchiaro JL, Risley A, et al. CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. Proc Natl Acad Sci U S A. 2006;103:10408–13. doi:10.1073/pnas.0508961103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Archer NK, Harro JM, Shirtliff ME. Clearance of Staphylococcus aureus nasal carriage is T cell dependent and mediated through interleukin-17A expression and neutrophil influx. Infect Immun. 2013;81:2070–5. doi:10.1128/IAI.00084-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fujii T, Yamada S, Watanabe Y, Misawa H, Tajima S, Fujimoto K, et al. Induction of choline acetyltransferase mRNA in human mononuclear leukocytes stimulated by phytohemagglutinin, a T-cell activator. J Neuroimmunol. 1998;82:101–7.

    Article  CAS  PubMed  Google Scholar 

  21. Suga K, Kawakami Y, Hiyama A, Sugi K, Okabe K, Matsumoto T, et al. Dual-time point 18F-FDG PET/CT scan for differentiation between 18F-FDG-avid non-small cell lung cancer and benign lesions. Ann Nucl Med. 2009;23:427–35. doi:10.1007/s12149-009-0260-6.

    Article  PubMed  Google Scholar 

  22. Nguyen NC, Kaushik A, Wolverson MK, Osman MM. Is there a common SUV threshold in oncological FDG PET/CT, at least for some common indications? A retrospective study. Acta Oncol. 2011;50:670–7. doi:10.3109/0284186X.2010.550933.

    Article  PubMed  Google Scholar 

  23. Tateishi U, Hasegawa T, Seki K, Terauchi T, Moriyama N, Arai Y. Disease activity and 18F-FDG uptake in organising pneumonia: semi-quantitative evaluation using computed tomography and positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33:906–12. doi:10.1007/s00259-006-0073-y.

    Article  PubMed  Google Scholar 

  24. Bremnes RM, Al-Shibli K, Donnem T, Sirera R, Al-Saad S, Andersen S, et al. The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer. J Thoracic Oncol Off Publ Int Assoc Stud Lung Cancer. 2011;6:824–33. doi:10.1097/JTO.0b013e3182037b76.

    Google Scholar 

  25. Munoz-Delgado E, Montenegro MF, Campoy FJ, Moral-Naranjo MT, Cabezas-Herrera J, Kovacs G, et al. Expression of cholinesterases in human kidney and its variation in renal cell carcinoma types. FEBS J. 2010;277:4519–29. doi:10.1111/j.1742-4658.2010.07861.x.

    Article  CAS  PubMed  Google Scholar 

  26. Hiraoka K, Okamura N, Funaki Y, Watanuki S, Tashiro M, Kato M, et al. Quantitative analysis of donepezil binding to acetylcholinesterase using positron emission tomography and [5-(11)C-methoxy]donepezil. Neuroimage. 2009;46:616–23. doi:10.1016/j.neuroimage.2009.03.006.

    Article  PubMed  Google Scholar 

  27. Ishikawa M, Sakata M, Ishii K, Kimura Y, Oda K, Toyohara J, et al. High occupancy of sigma1 receptors in the human brain after single oral administration of donepezil: a positron emission tomography study using [11C]SA4503. Int J Neuropsychopharmacol / Off Sci J Coll Int Neuropsychopharmacol (CINP). 2009;12:1127–31. doi:10.1017/S1461145709990204.

    CAS  Google Scholar 

  28. Carayon P, Bouaboula M, Loubet JF, Bourrie B, Petitpretre G, Le Fur G, et al. The sigma ligand SR 31747 prevents the development of acute graft-versus-host disease in mice by blocking IFN-gamma and GM-CSF mRNA expression. Int J Immunopharmacol. 1995;17:753–61.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu LX, Sharma S, Gardner B, Escuadro B, Atianzar K, Tashkin DP, et al. IL-10 mediates sigma 1 receptor-dependent suppression of antitumor immunity. J Immunol. 2003;170:3585–91.

    Article  CAS  PubMed  Google Scholar 

  30. Toyohara J, Elsinga PH, Ishiwata K, Sijbesma JW, Dierckx RA, van Waarde A. Evaluation of 4′-[methyl-11C]thiothymidine in a rodent tumor and inflammation model. J Nucl Med. 2012;53:488–94. doi:10.2967/jnumed.111.098426.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge laboratory technician Mette Simonsen for invaluable help on PET/MRI imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Borghammer.

Ethics declarations

The study was funded by the Danish Medical Research Council and the Lundbeck foundation. Per Borghammer has served as a consultant for F. Hoffmann – La Roche Ltd. All other co-authors had no conflicts of interest concerning the present study. Permission for the studies of mice and pigs were obtained from the Danish Animal Experiments Inspectorate (j. nr. 2013-15-2934-00878). All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All human studies were approved by the Central Denmark Region Committee on Health Research and the Danish Health and Medicines Authority, and followed the ethical standards of the institutional and national research committee and the 1964 Helsinki declaration and its later amendments. Written informed consent was obtained from all participants prior to enrollment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jørgensen, N.P., Alstrup, A.K.O., Mortensen, F.V. et al. Cholinergic PET imaging in infections and inflammation using 11C-donepezil and 18F-FEOBV. Eur J Nucl Med Mol Imaging 44, 449–458 (2017). https://doi.org/10.1007/s00259-016-3555-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-016-3555-6

Keywords

Navigation