Skip to main content

Advertisement

Log in

Altered spectrum of somatic hypermutation in common variable immunodeficiency disease characteristic of defective repair of mutations

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Pathogenic common variable immunodeficiency diseases (CVID) are genetic, usually inherited diseases for which a limited number of genetic defects have been implicated. As CVID presents with a wide range of clinical characteristics, there are likely diverse and for the most part unidentified genetic causes. In some individuals, defects in somatic hypermutation (SHM) have been suggested as the underlying cause of CVID. To address the mechanisms of SHM defects in CVID, we conducted a comprehensive mutational analysis of immunoglobulin heavy chain sequences from CVID patients. We identified several remarkably specific alterations in the spectra of SHM in comparison to healthy individuals. We provide evidence that some CVID cases are associated with defective repair of AID-induced mutations by the DNA mismatch repair (MMR) machinery. Our findings together with reports of increased chromosomal radiosensitivity and associated lymphoproliferative disorders amongst CVID patients, suggest that altered DNA damage repair may be a cause of CVID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Herz W, McGeady SJ (2003) Antibody response in common variable immunodeficiency. Ann Allergy Asthma Immunol 90:244–247

    Article  CAS  PubMed  Google Scholar 

  • Andersen P, Permin H, Andersen V, Schejbel L, Garred P, Svejgaard A, Barington T (2005) Deficiency of somatic hypermutation of the antibody light chain is associated with increased frequency of severe respiratory tract infection in common variable immunodeficiency. Blood 105:511–517

    Article  CAS  PubMed  Google Scholar 

  • Barbas SM, Ditzel HJ, Salonen EM, Yang WP, Silverman GJ, Burton DR (1995) Human autoantibody recognition of DNA. Proc Natl Acad Sci USA 92:2529–2533

    Article  CAS  PubMed  Google Scholar 

  • Bardwell PD, Woo CJ, Wei K, Li Z, Martin A, Sack SZ, Parris T, Edelmann W, Scharff MD (2004) Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice. Nat Immunol 5:224–229

    Article  CAS  PubMed  Google Scholar 

  • Bayry J, Hermine O, Webster DA, Lévy Y, Kaveri SV (2005) Common variable immunodeficiency: the immune system in chaos. Trends Mol Med 118:370–376

    Article  Google Scholar 

  • Bonhomme D, Hammarström L, Webster D, Chapel H, Hermine O, Le Deist F, Lepage E, Romeo PH, Levy Y (2000) Impaired antibody affinity maturation process characterizes a subset of patients with common variable immunodeficiency. J Immunol 165:4725–4730

    CAS  PubMed  Google Scholar 

  • Brezinschek HP, Brezinschek RI, Lipsky PE (1995) Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. J Immunol 155:190–202

    CAS  Google Scholar 

  • Caligiuri G, Stahl D, Kaveri S, Irinopoulous T, Savoie F, Mandet C, Vandaele M, Kazatchkine MD, Michel JB, Nicoletti A (2003) Autoreactive antibody repertoire is perturbed in atherosclerotic patients. Lab Invest 83:939–947

    Article  PubMed  Google Scholar 

  • Cascalho M, Wong J, Steinberg C, Wabl M (1998) Mismatch repair co-opted by hypermutation. Science 279:1207–1210

    Article  CAS  PubMed  Google Scholar 

  • Cunningham-Rundles C (2008) Autoimmune manifestations in common variable immunodeficiency. J Clin Immunol 28(Suppl 1):S42–S45

    Article  PubMed  Google Scholar 

  • Delbos F, De Smet A, Faili A, Aoufouchi S, Weill JC, Reynaud CA (2005) Contribution of DNA polymerase η to immunoglobulin gene hypermutation in the mouse. J Exp Med 201:1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Delbos F, Aoufouchi S, Faili A, Weill JC, Reynaud CA (2007) DNA polymerase η is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse. J Exp Med 204:17–23

    Article  CAS  PubMed  Google Scholar 

  • Di Noia J, Neuberger MS (2002) Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419:43–48

    Article  PubMed  Google Scholar 

  • Du L, Dunn-Walters DK, Chrzanowska KH, Stankovic T, Kotnis A, Li X, Lu J, Eggertsen G, Brittain C, Popov SW, Gennery AR, Taylor AM, Pan-Hammarström Q (2008) A regulatory role for NBS1 in strand-specific mutagenesis during somatic hypermutation. PLoS ONE 3:e2482

    Article  PubMed  Google Scholar 

  • Filipovich AH, Mathur A, Kamat D, Kersey JH, Shapiro RS (1994) Lymphoproliferative disorders and other tumors complicating immunodeficiencies. Immunodeficiency 5:91–112

    CAS  PubMed  Google Scholar 

  • Frieder D, Larijani M, Collins C, Shulman M, Martin A (2009) The concerted action of Msh2 and UNG stimulates somatic hypermutation at A.T base pairs. Mol Cell Biol 29:5148–5157

    Article  CAS  PubMed  Google Scholar 

  • Gennery AR, Cant AJ, Jeggo PA (2000) Immunodeficiency associated with DNA repair defects. Clin Exp Immunol 121:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glazko GB, Milanesi L, Rogozin IB (1998) The subclass approach for mutational spectrum analysis: application of the SEM algorithm. J Theor Biol 192:475–487

    Article  CAS  PubMed  Google Scholar 

  • Goldacker S, Warnatz K (2005) Tackling the heterogeneity of CVID. Curr Opin Allergy Clin Immunol 5:504–509

    Article  PubMed  Google Scholar 

  • Gompels MM, Hodges E, Lock RJ, Angus B, White H, Larkin A, Chapel HM, Spickett GP, Misbah SA, Smith JL, Gompels MM, Hodges E, Lock RJ, Angus B, White H, Larkin A, Chapel HM, Spickett GP, Misbah SA, Smith JL, Associated Study Group (2003) Lymphoproliferative disease in antibody deficiency: a multi-centre study. Clin Exp Immunol 134:314–320

    Article  CAS  PubMed  Google Scholar 

  • Iglesias Alzueta J, Matamoros Florí N (2001) Common variable immunodeficiency. Allergol Immunopathol (Madr) 29:113–118

    CAS  Google Scholar 

  • Kim N, Bozek G, Lo JC, Storb U (1999) Different mismatch repair deficiencies all have the same effects on somatic hypermutation: intact primary mechanism accompanied by secondary modifications. J Exp Med 190:21–30

    Article  CAS  PubMed  Google Scholar 

  • Kopecký O, Lukesová S (2007) Genetic defects in common variable immunodeficiency. Int J Immunogenet 34:225–229

    Article  PubMed  Google Scholar 

  • Larijani M, Frieder D, Basit W, Martin A (2005) The mutation spectrum of purified AID is similar to the mutability index in Ramos cells and in ung(-/-)msh2(-/-) mice. Immunogenetics 56:840–845

    Article  CAS  PubMed  Google Scholar 

  • Larijani M, Petrov AP, Kolenchenko O, Berru M, Krylov SN, Martin A (2007) AID associates with single-stranded DNA with high affinity and a long complex half-life in a sequence- independent manner. Mol Cell Biol 27:20–30

    Article  CAS  PubMed  Google Scholar 

  • Levy Y, Gupta N, Le Deist F, Garcia C, Fischer A, Weill JC, Reynaud CA (1998) Defect in IgV gene somatic hypermutation in common variable immuno-deficiency syndrome. Proc Natl Acad Sci USA 95:13135–13140

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Scherer SJ, Ronai D, Iglesias-Ussel MD, Peled JU, Bardwell PD, Zhuang M, Lee K, Martin A, Edelmann W, Scharff MD (2004) Examination of Msh6- and Msh3-deficient mice in class switching reveals overlapping and distinct roles of MutS homologues in antibody diversification. J Exp Med 200:47–59

    Article  CAS  PubMed  Google Scholar 

  • Longo NS, Lugar PL, Yavuz S, Zhang W, Krijger PH, Russ DE, Jima DD, Dave SS, Grammer AC, Lipsky PE (2009) Analysis of somatic hypermutation in X-linked hyper-IgM syndrome shows specific deficiencies in mutational targeting. Blood 113(16):3706–3715

    Article  CAS  PubMed  Google Scholar 

  • MacCarthy T, Kalis SL, Roa S, Pham P, Goodman MF, Scharff MD, Bergman A (2009) V-region mutation in vitro, in vivo, and in silico reveal the importance of the enzymatic properties of AID and the sequence environment. Proc Natl Acad Sci USA 106:8629–8634

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Scharff MD (2002) AID and mismatch repair in antibody diversification. Nat Rev Immunol 2:605–614

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Li Z, Lin DP, Bardwell PD, Iglesias-Ussel MD, Edelmann W, Scharff MD (2003) Msh2 ATPase activity is essential for somatic hypermutation at A-T base pairs and for efficient class switch recombination. J Exp Med 198:1171

    Article  CAS  PubMed  Google Scholar 

  • Minegishi Y, Lavoie A, Cunningham-Rundles C, Bédard PM, Hébert J, Côté L, Dan K, Sedlak D, Buckley RH, Fischer A, Durandy A, Conley ME (2000) Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin Immunol 97:203–210

    Article  CAS  PubMed  Google Scholar 

  • Modrich P, Lahue R (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65:101–133

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563

    Article  CAS  PubMed  Google Scholar 

  • Neuberger MS, Noia JM, Beale RC, Williams GT, Yang Z, Rada C (2005) Opinion: somatic hypermutation at A T pairs: polymerase error versus dUTP incorporation. Nat Rev Immunol 5:171–178

    Article  CAS  PubMed  Google Scholar 

  • Ohm-Laursen L, Schjebel L, Jacobsen K, Permin H, Svejgaard A, Barington T (2005) Normal ICOS, ICOSL and AID alleles in Danish patients with common variable immunodeficiency. Scand J Immunol 61:566–574

    Article  CAS  PubMed  Google Scholar 

  • Palanduz S, Palanduz A, Yalcin I, Somer A, Ones U, Ustek D, Ozturk S, Salman N, Guler N, Bilge H (1998) In vitro chromosomal radiosensitivity in common variable immune deficiency. Clin Immunol Immunopathol 86:180–182

    Article  CAS  PubMed  Google Scholar 

  • Pan-Hammarström Q, Lähdesmäki A, Zhao Y, Du L, Zhao Z, Wen S, Ruiz-Perez VL, Dunn-Walters DK, Goodship JA, Hammarström L (2006) Disparate roles of ATR and ATM in immunoglobulin class switch recombination and somatic hypermutation. J Exp Med 203:99–110

    Article  PubMed  Google Scholar 

  • Parker JC, Burlingame RW, Bunn CC (2009) Prevalence of antibodies to Ro-52 in a serologically defined population of patients with systemic sclerosis. J Autoimmune Dis 6:2

    Article  PubMed  Google Scholar 

  • Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman MF, Scharff MD (2008) The biochemistry of somatic hypermutation. Annu Rev Immunol 26:481–511

    Article  CAS  PubMed  Google Scholar 

  • Pham P, Bransteitter R, Petruska J, Goodman MF (2003) Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424:103–107

    Article  CAS  PubMed  Google Scholar 

  • Piqueras B, Lavenu-Bombled C, Galicier L, Bergeron-van der Cruyssen F, Mouthon L, Chevret S, Debré P, Schmitt C, Oksenhendler E (2003) Common variable immunodeficiency patient classification based on impaired B cell memory differentiation correlates with clinical aspects. J Clin Immunol 23(5):385–400

    Article  CAS  PubMed  Google Scholar 

  • Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS (2002) Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol 12:1748–1755

    Article  CAS  PubMed  Google Scholar 

  • Rogozin IB, Pavlov YI, Bebenek K, Matsuda T, Kunkel TA (2001a) Somatic mutation hotspots correlate with DNA polymerase η error spectrum. Nat Immunol 2:530–536

    Article  CAS  PubMed  Google Scholar 

  • Rogozin I, Kondrashov F, Glazko G (2001b) Use of mutation spectra analysis software. Hum Mutat 17:83–102

    Article  CAS  PubMed  Google Scholar 

  • Schejbel L, Marquart H, Andersen V, Permin H, Andersen P, Svejgaard A, Barington T (2005) Deficiency of somatic hypermutation of immunoglobulin G transcripts is a better predictor of severe respiratory tract infections than lack of memory B cells in common variable immunodeficiency. J Clin Immunol 25(4):392–403

    Article  CAS  PubMed  Google Scholar 

  • Stahl D, Lacroix-Desmazes S, Barreau C, Sibrowski W, Kazatchkine MD, Kaveri SV (2001) Altered antibody repertoires of plasma IgM and IgG toward nonself antigens in patients with warm autoimmune hemolytic anemia. Hum Immunol 62:348–361

    Article  CAS  PubMed  Google Scholar 

  • van de Ven AA, van de Corput L, van Tilburg CM, Tesselaar K, van Gent R, Sanders EA, Boes M, Bloem AC, van Montfrans JM (2010) Lymphocyte characteristics in children with common variable immunodeficiency. Clin Immunol 135:63–71

    Article  PubMed  Google Scholar 

  • Wang M, Rada C, Neuberger MS (2010) Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID. J Exp Med 207:141–153

    Article  CAS  PubMed  Google Scholar 

  • Wiesendanger M, Kneitz B, Edelmann W, Scharff MD (2000) Somatic hypermutation in MutS homologue (MSH)3-, MSH6-, and MSH3/MSH6-deficient mice reveals a role for the MSH2-MSH6 heterodimer in modulating the base substitution pattern. J Exp Med 191:579–584

    Article  CAS  PubMed  Google Scholar 

  • Wilson TM, Vaisman A, Martomo SA, Sullivan P, Lan L, Hanaoka F, Yasui A, Woodgate R, Gearhart PJ (2005) MSH2-MSH6 stimulates DNA polymerase η, suggesting a role for A:T mutations in antibody genes. J Exp Med 201:637–645

    Article  CAS  PubMed  Google Scholar 

  • Xue K, Rada C, Neuberger MS (2006) The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2−/− ung−/− mice. J Exp Med 203:2085–2094

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Research was supported by grants from the Canadian Institutes of Health Research (CIHR) and The Arthritis Society of Canada (TAS of Canada). BD is supported by CIHR and TAS of Canada. VRSKD is supported by Mathematics of Information Technology and Complex Systems (MITACS), GEOmatics for Informed DEcision (GEOIDE), Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Research Chairs (CRC) through Prof. Jianhong Wu, Center for Disease Modeling, York University and TAS of Canada through GEW. GEW would like to thank Clare Hall, University of Cambridge, UK. AM is supported by CIHR. ML is supported by CIHR and The industrial research and innovation fund (IRIF, Newfoundland). Authors are indebted to Dr. Igor Rogozin (NCBI, NIH, Bethesda, USA) for advice on CLUSTERM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhargavi Duvvuri or Mani Larijani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Mutation spectra of patients compared with the control group (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duvvuri, B., Duvvuri, V.R.S.K., Grigull, J. et al. Altered spectrum of somatic hypermutation in common variable immunodeficiency disease characteristic of defective repair of mutations. Immunogenetics 63, 1–11 (2011). https://doi.org/10.1007/s00251-010-0483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-010-0483-7

Keywords

Navigation