Skip to main content
Log in

Modifiable Clinical Correlates of Vascular Health in Children and Adolescents with Dyslipidemia

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Atherosclerosis promoting cardiovascular disease risk factors (CVDrf) are highly prevalent among youth in the U.S. Determining which standard modifiable clinical measures (SMCMs) has the greatest impact on vascular structure and function is valuable for the health care provider to help identify children at highest risk. The aim of this study was to determine modifiable outpatient clinical predictors of vascular health in youth with CVDrf. Children and adolescents with CVDrf (n = 120, 13.1 ± 1.9 years, 49% female) were recruited from a pediatric preventive cardiology clinic. The SMCMs included BMI z-score, waist-to-height ratio (WTHR), lipid panel, hemoglobin A1c, blood pressure (BP), presence of tobacco smoke exposure, and presence of hypertriglyceridemic waist (HTW) phenotype (triglycerides ≥ 110 mg/dL and waist circumference ≥ 90 percentile). Vascular function and structure were measured with pulse wave velocity (PWV), central systolic BP (CSP), augmentation index (AIx), and carotid artery intima-media thickness (cIMT). Sex and height specific z-scores for PWV, CSP, and cIMT were used. Multiple linear regression with backwards selection identified SMCMs which strongly predicted vascular function and structure. Among SMCMs, WTHR and HTW were the most frequent predictors of vascular function (PWV: R2 = 0.32; CSP: R2 = 0.35; AIx R2 = 0.13). Other predictors of vascular function included hemoglobin A1C, BP, and BMI z-score. Systolic BP and LDL cholesterol were predictors of vascular structure (cIMT: R2 = 0.14). The strongest predictors of vascular health in youth with CVDrf were related to measures of central obesity. Targeting these SMCM in lieu of vascular testing in outpatient clinic setting may be practical to identify children and adolescents at greatest risk for CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIx:

Augmentation index

BMI:

Body mass index

CVDrf:

Cardiovascular disease risk factors

cIMT:

Carotid artery intima-media thickness

CSP:

Central systolic pressure

HbA1c:

Hemoglobin A1c

HDL-C:

High density lipoprotein cholesterol

HTW:

Hypertriglyceridemic waist phenotype

LDL-C:

Low density lipoprotein cholesterol

PWV:

Pulse wave velocity

SMCM(s):

Standard modifiable clinical measures

WTHR:

Waist-to-height ratio

References

  1. Sorensen KE, Celemajer DS, Georgakopoulos D, Hatcher G, Betteridge DJ, Deanfield JE (1994) Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to lipoprotein(a) level. J Clin Invest 93(1):50–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aggoun Y, Bonnet D, Sidi D, Girardet JP, Brucker E, Polak M, Safar ME, Lecy BI (2000) Arterial mechanical changes in children with familial hypercholesterolemia. Arter Thomb Vasc Biol 20(9):2070–2075

    Article  CAS  Google Scholar 

  3. PDAY Research Group (1990) Relationship of atherosclerosis in young men to serum lipoprotein cholesterol concentration and smoking. A preliminary report from the Pathobiological Determinants of Atherosclerosis in Youth (PAYDAY) Research Group. JAMA 264(23):3018–3024

    Article  Google Scholar 

  4. Davis PH, Dawson JD, Riley WA, Lauer RM (2001) Carotid intimal-medial thickness is related to cardiovascular risk factors measured from childhood through middle age: the Muscatine Study. Circulation 104:2815–2819

    Article  CAS  PubMed  Google Scholar 

  5. Giannattasio C, Capra A, Facchetti R, Viscardi L, Bianchi F, Failla M, Colombo V, Grieco A, Mancia G (2007) Relationship between arterial distensibility and coronary athersclerosis in angina patients. J Hypertens 25(3):593–598

    Article  CAS  PubMed  Google Scholar 

  6. Hall JE (2011) Guton and hall textbook of medical physiology, 12 edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  7. Leeson CP, Whincup PH, Cook DG, Mullen MJ, Donald AE, Seymour CA, Deanfield JE (2000) Cholesterol and arterial distensibility in the first decade of life: a population-based study. Circulation 101(13):1533–1538

    Article  CAS  PubMed  Google Scholar 

  8. Newman WP, Wattigney W, Berenson GS (1991) Autopsy studies in United States children and adolescents: Relationship of risk factors to athersclerotic lesions. Ann NY Acad Sci 623:16–25

    Article  PubMed  Google Scholar 

  9. Virkola K, Pesonen E, Akerblom HK, Siimes MA (1997) Cholesterol and carotid artery wall in children and adolescents with familial hypercholesterolaemia: a controlled study by ultrasound. Acta Pediatrica 86:1203–1207

    Article  CAS  Google Scholar 

  10. Le J, Zhang D, Menees S, Chen J, Raghuveer G (2010) “Vascular age” is advanced in children with athersclerosis-promoting risk factors. Circ Cardiovasc Imaging 3(1):8–14

    Article  PubMed  Google Scholar 

  11. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27(21):2588–2605

    Article  PubMed  Google Scholar 

  12. Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, Asmar R, Reneman RS, Hoeks AP, Breteler MM (2006) Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 113(5):657–663

    Article  PubMed  Google Scholar 

  13. Hansen T, Staessen JA (2006) Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 113(5):664–670

    Article  Google Scholar 

  14. Bhuiyan AR, Srinivasan SR, Chen W, Paul TK, Berenson GS (2006) Correlates of vascular structure and function measures in asymptomatic young adults: the Bogalusa Heart Study. Atherosclerosis 189(1):1–7

    Article  CAS  PubMed  Google Scholar 

  15. Çelik A, Ozçetin M, Yerli Y, Damar I, Kadı H, Koç F, Ceyhan K (2011) Increased aortic pulse wave velocity in obese children. Turk Kardiyol Dern Ars 39(7):557–562

    Article  PubMed  Google Scholar 

  16. Lurbe E, Torro I, Garcia-Vicent C, Alvarez J, Fernandez-Fornoso JA, Redon J (2012) Blood pressure and obesity exert independant influences on pulse wave velocity in youth. Hypertension 60(2):550–555

    Article  CAS  PubMed  Google Scholar 

  17. Riggio S, Mandraffino G, Sardo M, Iudicello R, Camarda N, Imbalzano E, Alibrandi A, Saitta C, Carerj S, Arrigo T (2010) Pulse wave velocity and augmentation index, but not intima-media thickness, are early indicators of vascular damage in hypercholesterolemic children. Eur J Clin Invest 40(3):250–257

    Article  CAS  PubMed  Google Scholar 

  18. Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, Umans JG, Howard BV (2007) Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension 50(1):197–203. https://doi.org/10.1161/hypertensionaha.107.089078

    Article  CAS  PubMed  Google Scholar 

  19. Iannuzzi A, Licenziati MR, Acampora C, Salvatore V, Auriemma L, Romano ML, Panico S, Rubba P, Trevisan M (2004) Increased carotid intima-media thickness and stiffness in obese children. Diab Care 27(10):2506–2508

    Article  Google Scholar 

  20. Mittelman SD, Gilsanz P, Mo AO, Wood J, Dorey F, Gilsanz V (2010) Adiposity predicts carotid intima-media thickness in healthy children and adolescents. J Pediatr 156(4):592–597.e592

    Article  PubMed  Google Scholar 

  21. Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino RB, Sr (2011) Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med 365(3):213–221. https://doi.org/10.1056/NEJMoa1012592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sass C, Herbeth B, Chapet O, Siest G, Visvikis S, Zannad F (1998) Intima–media thickness and diameter of carotid and femoral arteries in children, adolescents and adults from the Stanislas cohort: effect of age, sex, anthropometry and blood pressure. J Hypertens 16(11):1593–1602

    Article  CAS  PubMed  Google Scholar 

  23. Simsek E, Balta H, Balta Z, Dallar Y (2010) Childhood obesity-related cardiovascular risk factors and carotid intima-media thickness. Turk J Pediatr 52(6):602

    PubMed  Google Scholar 

  24. Dangardt F, Osika W, Volkmann R, Gan LM, Friberg P (2008) Obese children show increased intimal wall thickness and decreased pulse wave velocity. Clin Physiol Funct Imaging 28(5):287–293

    Article  PubMed  Google Scholar 

  25. Martin SS, Blaha MJ, Elshazly MB, Toth PP, Kwiterovich PO, Blumenthal RS, Jones SR (2013) Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA 310(19):2061–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, Mei Z, Curtin LR, Roche AF, Johnson CL (2000) CDC growth charts: United States. Adv Data (314):1–27

  27. Lee CG, Park HM, Shin HJ, Moon JS, Hong YM, Kim NS, Ha IS, Chang MJ, Oh KW (2011) Validation study of the Dinamap ProCare 200 upper arm blood pressure monitor in children and adolescents. Korean J Pediatr 54(11):463–469

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sharma AK, Metzger DL, Daymont C, Hadjiyannakis S, Rodd CJ (2015) LMS tables for waist-circumference and waist-height ratio z-scores in children aged 5–19 year in NHANES III: Association with cardio-metabolic risks. Pediatr Res 78(6):723–729

    Article  PubMed  Google Scholar 

  29. Esmaillzadeh A, Mirmiran P, Azizi F (2006) Clustering of metabolic abnormalities in adolescents with the hypertriglyceridemic waist phenotype. Am J Clin Nutr 83(1):36–46

    Article  CAS  PubMed  Google Scholar 

  30. Menees S, Zhang D, Le J, Chen J, Raghuveer G (2010) Variations in carotid artery intima-media thickness during the cardiac cycle in children. J Am Soc Echocardiogr 23:58–63

    Article  PubMed  Google Scholar 

  31. Doyon A, Kracht D, Bayazit AK, Deveci M, Duzova A, Krmar RT, Litwin M, Niemirska A, Oguz B, Schmidt BM (2013) Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension 62(3):550–556

    Article  CAS  PubMed  Google Scholar 

  32. Stoner L, Lambrick DM, Westrupp N, Young J, Faulkner J (2014) Validation of oscillometric pulse wave analysis measurements in children. Am J Hypertens 27(6):865–872

    Article  PubMed  Google Scholar 

  33. Butlin M, Qasem A, Battista F, Bozec E, McEniery CM, Millet-Amaury E, Pucci G, Wilkinson IB, Schillaci G, Boutouyrie P, Avolio AP (2013) Carotid-femoral pulse wave valocity assessment using novel cuff-based techniques: comparison with tonometric measurements. J Hypertens 31(11):2237–2243

    Article  CAS  PubMed  Google Scholar 

  34. Shahin Y, Barakat H, Barnes R, Chetter I (2013) The vicorder device compared with SphygmoCor in the assessment of carotid-femoral pulse wave velocity in patients with peripheral artery disease. Hypertens Res 36(3):208–212

    Article  PubMed  Google Scholar 

  35. Hwang M, Yoo J, Kim H, Hwang C, Mackay K, Hemstreet O, Nichols W, Christou D (2014) Validity and reliability of aortic pulse wave velocity and augmentation index determined by the new cuff-based SphygmoCor Xcel. J Hum Hypertens 28(8):475–481

    Article  CAS  PubMed  Google Scholar 

  36. Shoji T, Nakagomi A, Okada S, Ohno Y, Kobayashi Y (2017) Invasive validation of a novel brachial cuff-based oscillometric device (SphygmoCor XCEL) for measuring central blood pressure. J Hypertens 35(1):69–75

    Article  CAS  PubMed  Google Scholar 

  37. Chen C-H, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, Kass DA (1997) Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure: validation of generalized transfer function. Circulation 95(7):1827–1836

    Article  CAS  PubMed  Google Scholar 

  38. Pauca AL, O’rourke MF, Kon ND (2001) Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension 38(4):932–937

    Article  CAS  PubMed  Google Scholar 

  39. Milne L, Keehn L, Guilcher A, Reidy JF, Karunanithy N, Rosenthal E, Qureshi S, Chowienczyk PJ, Sinha MD (2015) Central aortic blood pressure from ultrasound wall-tracking of the carotid artery in children: comparison with invasive measurements and radial tonometry. Hypertension 65(5):1141–1146

    Article  CAS  PubMed  Google Scholar 

  40. Elmenhorst J, Hulpke-Wette M, Barta C, Dalla Pozza R, Springer S, Oberhoffer R (2015) Percentiles for central blood pressure and pulse wave velocity in children and adolescents recorded with an oscillometric device. Atherosclerosis 238(1):9–16

    Article  CAS  PubMed  Google Scholar 

  41. Butlin M, Qasem A, Avolio AP (2012) Estimation of central aortic pressure waveform features derived from the brachial cuff volume displacement waveform. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 2591–2594

  42. Young Y, Abdolhosseini P, Brown F, Faulkner J, Lambrick D, Williams MA, Stoner L (2015) Reliability of oscillometric central blood pressure and wave reflection readings: effects of posture and fasting. J Hypertens 33(8):1588–1593

    Article  CAS  PubMed  Google Scholar 

  43. Sakuragi S, Abhayaratna K, Gravenmaker KJ, O’reilly C, Srikusalanukul W, Budge MM, Telford RD, Abhayaratna WP (2009) Influence of adiposity and physical activity on arterial stiffness in healthy children: the lifestyle of our kids study. Hypertension 53(4):611–616

    Article  CAS  PubMed  Google Scholar 

  44. Narverud I, Retterstøl K, Iversen PO, Halvorsen B, Ueland T, Ulven SM, Ose L, Aukrust P, Veierød MB, Holven KB (2014) Markers of atherosclerotic development in children with familial hypercholesterolemia: a literature review. Atherosclerosis 235(2):299–309

    Article  CAS  PubMed  Google Scholar 

  45. Urbina EM, Kimball TR, Khoury PR, Daniels SR, Dolan LM (2010) Increased arterial stiffness is found in adolescents with obesity or obesity-related type 2 diabetes mellitus. J Hypertens 28(8):1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reinehr T, Kiess W, de Sousa G, Stoffel-Wagner B, Wunsch R (2006) Intima media thickness in childhood obesity: relations to inflammatory marker, glucose metabolism, and blood pressure. Metabolism 55(1):113–118

    Article  CAS  PubMed  Google Scholar 

  47. Short KR, Blackett PR, Gardner AW, Copeland KC (2009) Vascular health in children and adolescents: effects of obesity and diabetes. Vasc Health Risk Manag 5:973

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pierce GL, Zhu H, Darracott K, Edet I, Bhagatwala J, Huang Y, Dong Y (2012) Arterial stiffness and pulse-pressure amplification in overweight/obese African-American adolescents: relation with higher systolic and pulse pressure. Am J Hypertens 26(1):20–26

    Article  PubMed Central  Google Scholar 

  49. Zebekakis PE, Nawrot T, Thijs L, Balkestein EJ, van der Heijden-Spek J, Van Bortel LM, Struijker-Boudier HA, Safar ME, Staessen JA (2005) Obesity is associated with increased arterial stiffness from adolescence until old age. J Hypertens 23(10):1839–1846

    Article  CAS  PubMed  Google Scholar 

  50. Buchan DS, Boddy LM, Despres JP, Grace FM, Sculthorpe N, Mahoney C, Baker JS (2016) Utility of the hypertriglyceridemic waist phenotype in the cardiometabolic risk assessment of youth stratified by body mass index. Pediatr Obes 11(4):292–298

    Article  CAS  PubMed  Google Scholar 

  51. Bailey DP, Savory LA, Denton SJ, Davies BR, Kerr CJ (2013) The hypertriglyceridemic waist, waist-to-height ratio, and cardiometabolic risk. J Pediatr 162(4):746–752

    Article  PubMed  Google Scholar 

  52. Hsieh SD, Yoshinaga H, Muto T (2003) Waist-to-height ratio, a simple and practical index for assessing central fat distribution and metabolic risk in Japanese men and women. Int J Obes Relat Metab Disord 27(5):610–616. https://doi.org/10.1038/sj.ijo.0802259

    Article  CAS  PubMed  Google Scholar 

  53. Greenfield JR, Samaras K, Campbell LV, Jenkins AB, Kelly PJ, Spector TD, Hayward CS (2003) Physical activity reduces genetic susceptibility to increased central systolic pressure augmentation: a study of female twins. J Am Coll Cardiol 42(2):264–270

    Article  PubMed  Google Scholar 

  54. Orr JS, Gentile CL, Davy BM, Davy KP (2008) Large artery stiffening with weight gain in humans: role of visceral fat accumulation. Hypertension 51(6):1519–1524. https://doi.org/10.1161/hypertensionaha.108.112946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saijo Y, Kiyota N, Kawasaki Y, Miyazaki Y, Kashimura J, Fukuda M, Kishi R (2004) Relationship between C-reactive protein and visceral adipose tissue in healthy Japanese subjects. Diabetes Obes Metab 6(4):249–258

    Article  CAS  PubMed  Google Scholar 

  56. Diamant M, Lamb HJ, van de Ree MA, Endert EL, Groeneveld Y, Bots ML, Kostense PJ, Radder JK (2005) The association between abdominal visceral fat and carotid stiffness is mediated by circulating inflammatory markers in uncomplicated type 2 diabetes. J Clin Endocrinol Metab 90(3):1495–1501. https://doi.org/10.1210/jc.2004-1579

    Article  CAS  PubMed  Google Scholar 

  57. Sturm W, Sandhofer A, Engl J, Laimer M, Molnar C, Kaser S, Weiss H, Tilg H, Ebenbichler CF, Patsch JR (2009) Influence of visceral obesity and liver fat on vascular structure and function in obese subjects. Obesity 17(9):1783–1788

    Article  PubMed  Google Scholar 

  58. De Michele M, Panico S, Iannuzzi A, Celentano E, Ciardullo AV, Galasso R, Sacchetti L, Zarrilli F, Bond MG, Rubba P (2002) Association of obesity and central fat distribution with carotid artery wall thickening in middle-aged women. Stroke 33(12):2923–2928

    Article  PubMed  Google Scholar 

  59. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S (2007) Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56(4):1010–1013

    Article  CAS  PubMed  Google Scholar 

  60. Lemieux I, Pascot A, Couillard C, Lamarche B, Tchernof A, Alméras N, Bergeron J, Gaudet D, Tremblay G, Prud’homme D (2000) Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation 102(2):179–184

    Article  CAS  PubMed  Google Scholar 

  61. Brambilla P, Bedogni G, Moreno L, Goran M, Gutin B, Fox K, Peters D, Barbeau P, De Simone M, Pietrobelli A (2006) Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children. Int J Obes 30(1):23

    Article  CAS  Google Scholar 

  62. Smulyan H, Marchais SJ, Pannier B, Guerin AP, Safar ME, London GM (1998) Influence of body height on pulsatile arterial hemodynamic data. J Am Coll Cardiol 31(5):1103–1109

    Article  CAS  PubMed  Google Scholar 

  63. McCarthy HD, Ashwell M (2006) A study of central fatness using waist-to-height ratios in UK children and adolescents over two decades supports the simple message–’keep your waist circumference to less than half your height’. Int J Obes 30(6):988–992. https://doi.org/10.1038/sj.ijo.0803226

    Article  CAS  Google Scholar 

  64. Urbina EM, Khoury PR, McCoy C, Daniels SR, Kimball TR, Dolan LM (2011) Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hypertens 13(5):332–342. https://doi.org/10.1111/j.1751-7176.2011.00471.x

    Article  Google Scholar 

  65. Stabouli S, Kotsis V, Karagianni C, Zakopoulos N, Konstantopoulos A (2012) Blood pressure and carotid artery intima-media thickness in children and adolescents: the role of obesity. Hellenic J Cardiol 53(1):41–47

    PubMed  Google Scholar 

  66. Glagov S, Vito R, Giddens DP, Zarins CK (1992) Micro-architecture and composition of artery walls: relationship to location, diameter and. J Hypertens 10(6):S101–S104

    CAS  Google Scholar 

Download references

Acknowledgements

Kathrine Berry Richardson Foundation internal research award from Children’s Mercy Hospital; and Sarah Morrison medical student research award from the University of Missouri Kansas City, School of Medicine funded this study. We would like to thank our patients who generously shared their time participating in this study.

Funding

This study was funded through an internal grant through The Children’s Mercy Hospital supported by the Katherine Berry Richardson Foundation. The study sponsor had no role in study design, data collection, data analysis, interpretation of the results, writing of the manuscript, decision to submit the manuscript, or journal choice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. White.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

All testing and procedures performed in this study involving human participants were in accordance with the ethical standards of The Children’s Mercy Hospital and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All parents of subjects completed an informed consent and subjects completed assent prior to any research-related procedures involved in this study. DW wrote the first draft and every subsequent draft of the manuscript. No honorarium, grant, or any other form of payment was provided to him for writing the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, D.A., Anand, G.M., Qayum, O. et al. Modifiable Clinical Correlates of Vascular Health in Children and Adolescents with Dyslipidemia. Pediatr Cardiol 40, 805–812 (2019). https://doi.org/10.1007/s00246-019-02071-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-019-02071-w

Keywords

Navigation