Skip to main content

Advertisement

Log in

Incidence of Fever and Positive Bacterial Cultures in Neonates Receiving Prostaglandin

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Prostaglandin E (PGE1) is necessary to maintain ductus arteriosus patency in many newborns with congenital heart disease. Because PGE1 therapy commonly leads to fever, and given this population’s fragile state, a complete sepsis workup is often performed in febrile, but otherwise asymptomatic, patients. This practice of liberal evaluation with bacterial cultures, empiric antibiotic treatment, and delays in essential surgical intervention may result in poor resource utilization and lead to increased iatrogenic morbidity. This study sought to determine the incidence of fever and culture-positive infection in patients receiving PGE1, and identify diagnostic variables that predict culture-positive infection. The study included a single-center retrospective review of all neonates receiving PGE1 between 2011 and 2014. Logistic regression and receiver operator characteristic analysis were used to identify significant predictors of positive bacterial cultures. Among 435 neonates, 175 (40%) had fevers (≥ 38.3 °C) while concurrently receiving PGE1, but only 9 (2%) had culture-positive infection and 1 (< 1%) had culture-positive bacteremia. Among 558 cultures collected, only 16 (3%) had bacterial growth. Multivariable analysis revealed age (p = 0.049, AUC 0.604), hospital length of stay (p = 0.002, AUC 0.764) and hypoxemia (p = 0.044, AUC 0.727) as the only significant predictors of positive cultures. Fever (p = 0.998, AUC 0.424) was not a significant predictor. In conclusion, given that fever occurs frequently in neonates receiving PGE1 and it is a very non-specific marker and not a predictor of positive cultures, the common practice of complete sepsis workup should be re-examined in febrile patients at low risk of bacterial illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Coceani F, Olley P (1973) The response of the ductus arteriosus to prostaglandins. Can J Physiol Pharmacol 51(3):220–225

    Article  CAS  PubMed  Google Scholar 

  2. Elliott R, Starling M, Neutze J (1975) Medical manipulation of the ductus arteriosus. Lancet 305(7899):140–142

    Article  Google Scholar 

  3. Olley PM, Coceani F, Bodach E (1976) E-type prostaglandins: a new emergency therapy for certain cyanotic congenital heart malformations. Circulation 53(4):728–731

    Article  CAS  PubMed  Google Scholar 

  4. Lewis AB, Freed MD, Heymann MA, Roehl SL, Kensey RC (1981) Side effects of therapy with prostaglandin E1 in infants with critical congenital heart disease. Circulation 64(5):893–898

    Article  CAS  PubMed  Google Scholar 

  5. Kramer H-H, Sommer M, Rammos S, Krogmann O (1995) Evaluation of low dose prostaglandin E1 treatment for ductus dependent congenital heart disease. Eur J Pediatr 154(9):700–707

    Article  CAS  PubMed  Google Scholar 

  6. Pantell RH, Newman TB, Bernzweig J, Bergman DA, Takayama JI, Segal M, Finch SA, Wasserman RC (2004) Management and outcomes of care of fever in early infancy. JAMA 291(10):1203–1212

    Article  PubMed  Google Scholar 

  7. Hui C, Neto G, Tsertsvadze A, Yazdi F, Tricco AC, Tsouros S, Kin B, Skidmore B, Daniel MR (2012) Diagnosis and management of febrile infants (0–3 months). Evid Rep Technol Assess (Full Rep) 205:1–297

    Google Scholar 

  8. DeAngelis C, Joffe A, Wilson M, Willis E (1983) Iatrogenic risks and financial costs of hospitalizing febrile infants. Am J Dis Child 137(12):1146–1149

    CAS  PubMed  Google Scholar 

  9. Pantell RH (2012) Febrile infants: aligning science, guidelines, and cost reduction with quality of individualized care. Pediatrics 130(1):e199–e200

    Article  PubMed  Google Scholar 

  10. Byington CL, Reynolds CC, Korgenski K, Sheng X, Valentine KJ, Nelson RE, Daly JA, Osguthorpe RJ, James B, Savitz L (2012) Costs and infant outcomes after implementation of a care process model for febrile infants. Pediatrics 130(1):e16–e24

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baraff LJ (2000) Management of fever without source in infants and children. Ann Emerg Med 36(6):602–614

    Article  CAS  PubMed  Google Scholar 

  12. Chacha F, Mirambo MM, Mushi MF, Kayange N, Zuechner A, Kidenya BR, Mshana SE (2014) Utility of qualitative C-reactive protein assay and white blood cells counts in the diagnosis of neonatal septicaemia at Bugando Medical Centre, Tanzania. BMC Pediatr 14(1):248

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chiesa C, Panero A, Osborn JF, Simonetti AF, Pacifico L (2004) Diagnosis of neonatal sepsis: a clinical and laboratory challenge. Clin Chem 50(2):279–287

    Article  CAS  PubMed  Google Scholar 

  14. Gomez B, Bressan S, Mintegi S, Da Dalt L, Blazquez D, Olaciregui I, de la Torre M, Palacios M, Berlese P, Ruano A (2012) Diagnostic value of procalcitonin in well-appearing young febrile infants. Pediatrics 130(5):815–822

    Article  PubMed  Google Scholar 

  15. Jaskiewicz JA, McCarthy CA, Richardson AC, White KC, Fisher DJ, Powell KR, Dagan R (1994) Febrile infants at low risk for serious bacterial infection—an appraisal of the Rochester criteria and implications for management. Pediatrics 94(3):390–396

    CAS  PubMed  Google Scholar 

  16. Bonadio WA, Hagen E, Rucka J, Stommel P, Smith D (1993) Efficacy of a protocol to distinguish risk of serious bacterial infection in the outpatient evaluation of febrile young infants. Clin Pediatr 32(7):401–404

    Article  CAS  Google Scholar 

  17. Radford DJ, Thong Y (1988) The association between immunodeficiency and congenital heart disease. Pediatr Cardiol 9(2):103–108

    Article  CAS  PubMed  Google Scholar 

  18. Nigrovic LE, Kuppermann N, Neuman MI (2007) Risk factors for traumatic or unsuccessful lumbar punctures in children. Ann Emerg Med 49(6):762–771

    Article  PubMed  Google Scholar 

  19. Kuppermann N, Mahajan P (2016) Role of serum procalcitonin in identifying young febrile infants with invasive bacterial infections: one step closer to the holy grail? JAMA Pediatr 170(1):17–18

    Article  PubMed  Google Scholar 

  20. Milcent K, Faesch S, Gras-Le Guen C, Dubos F, Poulalhon C, Badier I, Marc E, Laguille C, de Pontual L, Mosca A (2016) Use of procalcitonin assays to predict serious bacterial infection in young febrile infants. JAMA Pediatr 170(1):62–69

    Article  PubMed  Google Scholar 

  21. Baker MD, Bell LM (1999) Unpredictability of serious bacterial illness in febrile infants from birth to 1 month of age. Arch Pediatr Adolesc Med 153(5):508–511

    Article  CAS  PubMed  Google Scholar 

  22. Kadish HA, Loveridget B, Tobeyt J, Bolte RG, Corneli HM (2000) Applying outpatient protocols in febrile infants 1-28 days of age: can the threshold be lowered? Clin Pediatr 39(2):81–88

    Article  CAS  Google Scholar 

  23. Schaffer K, Taylor CT (2015) The impact of hypoxia on bacterial infection. FEBS J 282(12):2260–2266

    Article  CAS  PubMed  Google Scholar 

  24. Mahieu L, De Muynck A, Ieven M, De Dooy J, Goossens H, Van Reempts P (2001) Risk factors for central vascular catheter-associated bloodstream infections among patients in a neonatal intensive care unit. J Hosp Infect 48(2):108–116

    Article  CAS  PubMed  Google Scholar 

  25. Newman CD (2006) Catheter-related bloodstream infections in the pediatric intensive care unit. Semin Pediatr Infect Dis 1:20–24

    Article  Google Scholar 

  26. Byington CL, Enriquez FR, Hoff C, Tuohy R, Taggart EW, Hillyard DR, Carroll KC, Christenson JC (2004) Serious bacterial infections in febrile infants 1 to 90 days old with and without viral infections. Pediatrics 113(6):1662–1666

    Article  PubMed  Google Scholar 

  27. Nosrati A, Ben Tov A, Reif S (2014) Diagnostic markers of serious bacterial infections in febrile infants younger than 90 days old. Pediatr Int 56(1):47–52

    Article  PubMed  Google Scholar 

  28. Pratt A, Attia MW (2007) Duration of fever and markers of serious bacterial infection in young febrile children. Pediatr Int 49(1):31–35

    Article  CAS  PubMed  Google Scholar 

  29. Baraff LJ, Bass JW, Fleisher GR, Klein JO, McCracken GH, Powell KR, Schriger DL (1993) Practice guideline for the management of infants and children 0 to 36 months of age with fever without source. Ann Emerg Med 22(7):1198–1210

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabe E. Owens.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghanem, F., Rakestraw, S.L., Schumacher, K.R. et al. Incidence of Fever and Positive Bacterial Cultures in Neonates Receiving Prostaglandin. Pediatr Cardiol 39, 89–97 (2018). https://doi.org/10.1007/s00246-017-1731-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-017-1731-5

Keywords

Navigation