Skip to main content

Advertisement

Log in

Reproducibility of diffusion tensor imaging in normal subjects: an evaluation of different gradient sampling schemes and registration algorithm

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Diffusion tensor imaging (DTI) is very useful for investigating white matter integrity in ageing and neurological disorders; thus, evaluating its reproducibility under different acquisition protocols and analysis methods may assist in the design of clinical studies.

Methods

To measure the reproducibility of DTI in normal subjects, this study include (1) depicting the reproducibility of DTI measurements in commonly used regions-of-interest analysis by intraclass correlation coefficient (ICC) and coefficient of variation (CV), (2) evaluating and comparing inter and intrasession test-retest reproducibility, and (3) illustrating the effect of the number of diffusion-encoding directions (NDED) and registration algorithms on measurement reproducibility.

Results

DTI measurements exhibit high reproducibility, with overall (430/480) ICC ≥ 0.70, (478/480) within-subject CV (CVws) ≤10.00 % and between-subject CV (CVbs) ranging from 1.32 to 13.63 %. Repeated measures ANOVAs and paired t tests were conducted to compare inter and intrasession reproducibility with different diffusion sampling schemes and registration algorithms. Our results also confirmed that increasing the NDED could improve the accuracy and reproducibility of DTI measurements. In addition, we compared reproducibility indices that were derived using different registration algorithms, and a tensor-based deformable registration yielded the most reproducible results. Finally, we found that increasing the NDED could reduce the difference between the reproducibility of measurement derived using different registration algorithms and between the reproducibility of intersession and intrasession.

Conclusion

Our results suggest that the choice of DTI acquisition protocol and post-processing methods can influence the accurate estimation and reproducibility of DTI measurements and should be considered carefully for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267. doi:10.1016/s0006-3495(94)80775-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Qiu D, Tan LH, Zhou K, Khong PL (2008) Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development. NeuroImage 41(2):223–232. doi:10.1016/j.neuroimage.2008.02.023

    Article  PubMed  Google Scholar 

  3. Wozniak JR, Lim KO (2006) Advances in white matter imaging: a review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging. Neurosci Biobehav Rev 30(6):762–774. doi:10.1016/j.neubiorev.2006.06.003

    Article  PubMed Central  PubMed  Google Scholar 

  4. Ciccarelli O, Behrens TE, Altmann DR, Orrell RW, Howard RS, Johansen-Berg H, Miller DH, Matthews PM, Thompson AJ (2006) Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis. Brain: J Neurol 129(Pt 7):1859–1871. doi:10.1093/brain/awl100

    Article  CAS  Google Scholar 

  5. Meoded A, Kwan JY, Peters TL, Huey ED, Danielian LE, Wiggs E, Morrissette A, Wu T, Russell JW, Bayat E, Grafman J, Floeter MK (2013) Imaging findings associated with cognitive performance in primary lateral sclerosis and amyotrophic lateral sclerosis. Dement Geriatr Cogn Dis Extra 3(1):233–250. doi:10.1159/000353456

    Article  PubMed Central  PubMed  Google Scholar 

  6. Sato K, Aoki S, Iwata NK, Masutani Y, Watadani T, Nakata Y, Yoshida M, Terao Y, Abe O, Ohtomo K (2010) Diffusion tensor tract-specific analysis of the uncinate fasciculus in patients with amyotrophic lateral sclerosis. Neuroradiology 52(8):729–733

    Article  PubMed  Google Scholar 

  7. Blaschek A, Keeser D, Muller S, Koerte IK, Sebastian Schroder A, Muller-Felber W, Heinen F, Ertl-Wagner B (2013) Early white matter changes in childhood multiple sclerosis: a diffusion tensor imaging study. AJNR Am J Neuroradiol 34(10):2015–2020. doi:10.3174/ajnr.A3581

    Article  CAS  PubMed  Google Scholar 

  8. Temel S, Kekligkoglu HD, Vural G, Deniz O, Ercan K (2013) Diffusion tensor magnetic resonance imaging in patients with multiple sclerosis and its relationship with disability. Neuroradiol J 26(1):3–17

    CAS  PubMed  Google Scholar 

  9. Boespflug EL, Storrs JM, Allendorfer JB, Lamy M, Eliassen JC, Page S (2011) Mean diffusivity as a potential diffusion tensor biomarker of motor rehabilitation after electrical stimulation incorporating task specific exercise in stroke: a pilot study. Brain Imaging Behav. doi:10.1007/s11682-011-9144-1

    PubMed  Google Scholar 

  10. van der Aa NE, Northington FJ, Stone BS, Groenendaal F, Benders MJ, Porro G, Yoshida S, Mori S, de Vries LS, Zhang J (2013) Quantification of white matter injury following neonatal stroke with serial DTI. Pediatr Res 73(6):756–762. doi:10.1038/pr.2013.45

    Article  PubMed  Google Scholar 

  11. Wheeler-Kingshott CA, Cercignani M (2009) About "axial" and "radial" diffusivities. Magn Reson Med: Off J Soc Magn Reson Med / Soc Magn Reson Med 61(5):1255–1260. doi:10.1002/mrm.21965

    Article  Google Scholar 

  12. Klawiter EC, Schmidt RE, Trinkaus K, Liang HF, Budde MD, Naismith RT, Song SK, Cross AH, Benzinger TL (2011) Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. NeuroImage 55(4):1454–1460. doi:10.1016/j.neuroimage.2011.01.007

    Article  PubMed Central  PubMed  Google Scholar 

  13. Metwalli NS, Benatar M, Nair G, Usher S, Hu X, Carew JD (2010) Utility of axial and radial diffusivity from diffusion tensor MRI as markers of neurodegeneration in amyotrophic lateral sclerosis. Brain Res 1348:156–164. doi:10.1016/j.brainres.2010.05.067

    Article  CAS  PubMed  Google Scholar 

  14. Seal ML, Yucel M, Fornito A, Wood SJ, Harrison BJ, Walterfang M, Pell GS, Pantelis C (2008) Abnormal white matter microstructure in schizophrenia: a voxelwise analysis of axial and radial diffusivity. Schizophr Res 101(1–3):106–110. doi:10.1016/j.schres.2007.12.489

    Article  PubMed  Google Scholar 

  15. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17(3):1429–1436

    Article  PubMed  Google Scholar 

  16. Della Nave R, Ginestroni A, Diciotti S, Salvatore E, Soricelli A, Mascalchi M (2011) Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich’s ataxia. Neuroradiology 53(5):367–372

    Article  PubMed  Google Scholar 

  17. Wang JY, Abdi H, Bakhadirov K, Diaz-Arrastia R, Devous MD Sr (2012) A comprehensive reliability assessment of quantitative diffusion tensor tractography. NeuroImage 60(2):1127–1138. doi:10.1016/j.neuroimage.2011.12.062

    Article  PubMed Central  PubMed  Google Scholar 

  18. Landman BA, Farrell JA, Jones CK, Smith SA, Prince JL, Mori S (2007) Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. NeuroImage 36(4):1123–1138. doi:10.1016/j.neuroimage.2007.02.056

    Article  PubMed  Google Scholar 

  19. Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J (2006) Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. AJNR Am J Neuroradiol 27(8):1776–1781

    CAS  PubMed  Google Scholar 

  20. Papadakis NG, Murrills CD, Hall LD, Huang CL, Adrian Carpenter T (2000) Minimal gradient encoding for robust estimation of diffusion anisotropy. Magn Reson Imaging 18(6):671–679

    Article  CAS  PubMed  Google Scholar 

  21. Jones DK (2004) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo Study. Magn Reson Med : Off J Soc Magn Reson Med / Soc Magn Reson Med 51(4):807–815. doi:10.1002/mrm.20033

    Article  Google Scholar 

  22. Hasan KM, Parker DL, Alexander AL (2001) Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging JMRI 13(5):769–780

    Article  CAS  Google Scholar 

  23. Heiervang E, Behrens TE, Mackay CE, Robson MD, Johansen-Berg H (2006) Between session reproducibility and between subject variability of diffusion MR and tractography measures. NeuroImage 33(3):867–877. doi:10.1016/j.neuroimage.2006.07.037

    Article  CAS  PubMed  Google Scholar 

  24. Lazar M, Alexander AL (2005) Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24(2):524–532. doi:10.1016/j.neuroimage.2004.08.050

    Article  PubMed  Google Scholar 

  25. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31(4):1487–1505. doi:10.1016/j.neuroimage.2006.02.024

    Article  PubMed  Google Scholar 

  26. Gee J, Alexander D (2006) Diffusion-tensor image registration. In: Weickert J, Hagen H (eds) Visualization and processing of tensor fields. Mathematics and visualization. Springer, Berlin, Heidelberg, pp 327–342. doi:10.1007/3-540-31272-2_20

    Chapter  Google Scholar 

  27. Zhang H, Yushkevich PA, Alexander DC, Gee JC (2006) Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med Image Anal 10(5):764–785. doi:10.1016/j.media.2006.06.004

    Article  PubMed  Google Scholar 

  28. Schmithorst VJ, Holland SK, Dardzinski BJ (2008) Developmental differences in white matter architecture between boys and girls. Hum Brain Mapp 29(6):696–710. doi:10.1002/hbm.20431

    Article  PubMed Central  PubMed  Google Scholar 

  29. Jones DK, Griffin LD, Alexander DC, Catani M, Horsfield MA, Howard R, Williams SC (2002) Spatial normalization and averaging of diffusion tensor MRI data sets. NeuroImage 17(2):592–617

    Article  PubMed  Google Scholar 

  30. Christensen GE, Rabbitt RD, Miller MI (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Process: Publ IEEE Signal Proc Soc 5(10):1435–1447. doi:10.1109/83.536892

    Article  CAS  Google Scholar 

  31. Wang Y, Gupta A, Liu Z, Zhang H, Escolar ML, Gilmore JH, Gouttard S, Fillard P, Maltbie E, Gerig G, Styner M (2011) DTI registration in atlas based fiber analysis of infantile Krabbe disease. NeuroImage 55(4):1577–1586. doi:10.1016/j.neuroimage.2011.01.038

    Article  PubMed Central  PubMed  Google Scholar 

  32. Park HJ, Kubicki M, Shenton ME, Guimond A, McCarley RW, Maier SE, Kikinis R, Jolesz FA, Westin CF (2003) Spatial normalization of diffusion tensor MRI using multiple channels. NeuroImage 20(4):1995–2009

    Article  PubMed Central  PubMed  Google Scholar 

  33. Vollmar C, O’Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, Duncan JS, Richardson MP, Koepp MJ (2010) Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. NeuroImage 51(4):1384–1394. doi:10.1016/j.neuroimage.2010.03.046

    Article  PubMed Central  PubMed  Google Scholar 

  34. Brown WJ, Trost SG, Bauman A, Mummery K, Owen N (2004) Test-retest reliability of four physical activity measures used in population surveys. J Sci Med sport / Sports Med Aust 7(2):205–215

    Article  CAS  Google Scholar 

  35. Marenco S, Rawlings R, Rohde GK, Barnett AS, Honea RA, Pierpaoli C, Weinberger DR (2006) Regional distribution of measurement error in diffusion tensor imaging. Psychiatry Res 147(1):69–78. doi:10.1016/j.pscychresns.2006.01.008

    Article  PubMed Central  PubMed  Google Scholar 

  36. Papinutto ND, Maule F, Jovicich J (2013) Reproducibility and biases in high field brain diffusion MRI: an evaluation of acquisition and analysis variables. Magn Reson Imaging 31(6):827–839. doi:10.1016/j.mri.2013.03.004

    Article  PubMed  Google Scholar 

  37. Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK, Rosen BR, Fischl B, Corkin S, Rosas HD, Dale AM (2005) Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 26(8):1215–1227. doi:10.1016/j.neurobiolaging.2004.09.017

    Article  CAS  PubMed  Google Scholar 

  38. Snook L, Paulson LA, Roy D, Phillips L, Beaulieu C (2005) Diffusion tensor imaging of neurodevelopment in children and young adults. NeuroImage 26(4):1164–1173. doi:10.1016/j.neuroimage.2005.03.016

    Article  PubMed  Google Scholar 

  39. Alexander AL, Lee JE, Lazar M, Boudos R, DuBray MB, Oakes TR, Miller JN, Lu J, Jeong EK, McMahon WM, Bigler ED, Lainhart JE (2007) Diffusion tensor imaging of the corpus callosum in autism. NeuroImage 34(1):61–73. doi:10.1016/j.neuroimage.2006.08.032

    Article  PubMed  Google Scholar 

  40. Bonekamp D, Nagae LM, Degaonkar M, Matson M, Abdalla WM, Barker PB, Mori S, Horska A (2007) Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences. NeuroImage 34(2):733–742. doi:10.1016/j.neuroimage.2006.09.020

    Article  PubMed Central  PubMed  Google Scholar 

  41. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. NeuroImage 40(3):1044–1055. doi:10.1016/j.neuroimage.2007.12.053

    Article  CAS  PubMed  Google Scholar 

  42. Morioka S, Morimoto M, Yamada K, Hasegawa T, Morita T, Moroto M, Isoda K, Chiyonobu T, Imamura T, Nishimura A (2013) Effects of chemotherapy on the brain in childhood: diffusion tensor imaging of subtle white matter damage. Neuroradiology 55(10):1251–1257

    Article  PubMed  Google Scholar 

  43. Anderson AW (2001) Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn Reson Med : Off J Soc Magn Reson Med / Soc Magn Reson Med 46(6):1174–1188

    Article  CAS  Google Scholar 

  44. Farrell JA, Landman BA, Jones CK, Smith SA, Prince JL, van Zijl PC, Mori S (2007) Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. J Magn Reson Imaging JMRI 26(3):756–767. doi:10.1002/jmri.21053

    Article  Google Scholar 

  45. Seo Y (2013) Effects of different field strengths, gradient directions, and acquisitions on fractional anisotropy in diffusion tensor imaging: a tract‐based spatial statistics study. Concepts Magn Reson Part B: Magn Reson Eng 43(1):41–48

    Article  Google Scholar 

  46. Barnea-Goraly N, Menon V, Eckert M, Tamm L, Bammer R, Karchemskiy A, Dant CC, Reiss AL (2005) White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cortex 15(12):1848–1854. doi:10.1093/cercor/bhi062, New York, NY : 1991

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 60963012, 61262034, 11272242, and 31271061), the Fundamental Research Funds for the Central Universities, the Key Project of Chinese Ministry of Education (no. 211087), the Natural Science Foundation of Jiangxi Province (no. 20132BAB201025), the Young Scientist Foundation of Jiangxi Province (no. 20122BCB23017), the Science and Technology Research Project of the Education Department of Jiangxi Province (no. GJJ13302), the Central Universities of Central South University (2013zzts251), the Doctoral Fund of Ministry of Education of China (20120201120071), and the Fundamental Research Funds for the Central Universities of China.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Lin.

Additional information

Xin Liu and Jubao Sun contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Reproducibility of DTI measurements using the FLIRTreg registration algorithm. Note: highly reproducible cases (both intra- and intersession ICC ≥ 0.80 and CVws ≤ 10 %) are indicated in bold. Abbreviations: NDED, number of diffusion encoding directions; CC, corpus callosum; GCC, genu of the corpus callosum; SCC, splenium of the corpus callosum; PIC, posterior limb of the internal capsule; AIC, anterior limb of the internal capsule; ICC, intraclass correlation coefficient; CV, coefficient of variation; FA, fractional anisotropy, MD, mean diffusivity; λ, axial diffusivity; λ, radial diffusivities. (DOC 93 kb)

Table S2

Reproducibility of DTI measurement using the FNIRTreg registration algorithm. Note: highly reproducible cases (both intra- and intersession ICC ≥ 0.80 and CVws ≤ 10 %) are indicated in bold. For abbreviations, see Table S1. (DOC 91 kb)

Table S3

Reproducibility of DTI measurement using the DWIreg registration algorithm. Note: highly reproducible cases (both intra- and intersession ICC ≥ 0.80 and CVws ≤ 10 %) are indicated in bold. For abbreviations, see Table S1. (DOC 91 kb)

Table S4

Reproducibility of DTI measurement using the DTITKreg registration algorithm. Note: highly reproducible cases (both intra- and intersession ICC ≥ 0.80 and CVws ≤ 10 %) are indicated in bold. For abbreviations, see Table S1. (DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Yang, Y., Sun, J. et al. Reproducibility of diffusion tensor imaging in normal subjects: an evaluation of different gradient sampling schemes and registration algorithm. Neuroradiology 56, 497–510 (2014). https://doi.org/10.1007/s00234-014-1342-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-014-1342-2

Keywords

Navigation