Skip to main content
Log in

Longitudinal Use of Micro-computed Tomography Does Not Alter Microarchitecture of the Proximal Tibia in Sham or Ovariectomized Sprague–Dawley Rats

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

In vivo micro-computed tomography (μCT) provides the ability to measure longitudinal changes to tibia microarchitecture, but the effect of this radiation is not well understood. The right proximal tibia of Sprague–Dawley rats (n = 12/group) randomized to Sham-control (Sham) or ovariectomy (OVX) surgery at 12 weeks of age was scanned using μCT at 13, 17, 21, and 25 weeks of age, at a resolution of 18 μm and a radiation dose of 603 mGy. The left proximal tibia was scanned only at 25 weeks of age to serve as an internal non-irradiated control. Repeated irradiation did not affect tibia microarchitecture in Sham or OVX groups, although there was an increase in cortical eccentricity (P < 0.05). All trabecular outcomes and cortical BMD were different (P < 0.05) between groups after only 1 week post-surgery and differences persisted to study endpoint. Characteristic changes to trabecular bone were observed in OVX rats over time. Interactions of time and hormone status were found for cortical BMD (P < 0.001), Ps. Pm., and Ec. Pm. (P < 0.05). Repeated irradiation of the tibia at 13, 17, 21, and 25 weeks does not cause adverse effects to microarchitecture, regardless of hormone status. This radiation dose can be applied over a typical 3-month study period to comprehensively understand how an intervention alters tibia microarchitecture without confounding effects of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29(10):1096–1105. doi:10.1016/j.medengphy.2006.11.002

    Article  PubMed  Google Scholar 

  2. Nazarian A, Snyder BD, Zurakowski D, Muller R (2008) Quantitative micro-computed tomography: a non-invasive method to assess equivalent bone mineral density. Bone 43(2):302–311. doi:10.1016/j.bone.2008.04.009

    Article  PubMed  Google Scholar 

  3. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486. doi:10.1002/jbmr.141

    Article  PubMed  Google Scholar 

  4. Waarsing JH, Day JS, Verhaar JA, Ederveen AG, Weinans H (2006) Bone loss dynamics result in trabecular alignment in aging and ovariectomized rats. J Orthop Res 24(5):926–935. doi:10.1002/jor.20063

    Article  PubMed  Google Scholar 

  5. Klinck RJ, Campbell GM, Boyd SK (2008) Radiation effects on bone architecture in mice and rats resulting from in vivo micro-computed tomography scanning. Med Eng Phys 30(7):888–895. doi:10.1016/j.medengphy.2007.11.004

    Article  PubMed  Google Scholar 

  6. Laperre K, Depypere M, van Gastel N, Torrekens S, Moermans K, Bogaerts R, Maes F, Carmeliet G (2011) Development of micro-CT protocols for in vivo follow-up of mouse bone architecture without major radiation side effects. Bone 49(4):613–622. doi:10.1016/j.bone.2011.06.031

    Article  CAS  PubMed  Google Scholar 

  7. Brouwers JE, van Rietbergen B, Huiskes R (2007) No effects of in vivo micro-CT radiation on structural parameters and bone marrow cells in proximal tibia of Wistar rats detected after eight weekly scans. J Orthop Res 25(10):1325–1332. doi:10.1002/jor.20439

    Article  PubMed  Google Scholar 

  8. Francisco JI, Yu Y, Oliver RA, Walsh WR (2011) Relationship between age, skeletal site, and time post-ovariectomy on bone mineral and trabecular microarchitecture in rats. J Orthop Res 29(2):189–196. doi:10.1002/jor.21217

    Article  PubMed  Google Scholar 

  9. Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15(3):175–191

    Article  CAS  PubMed  Google Scholar 

  10. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA (2008) The laboratory rat as an animal model for osteoporosis research. Comp Med 58(5):424–430

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Thompson DD, Simmons HA, Pirie CM, Ke HZ (1995) FDA Guidelines and animal models for osteoporosis. Bone 17(4 Suppl):125S–133S

    CAS  PubMed  Google Scholar 

  12. Eriksen EF, Melsen F, Mosekilde L (1984) Reconstruction of the resorptive site in iliac trabecular bone: a kinetic model for bone resorption in 20 normal individuals. Metab Bone Dis Relat Res 5(5):235–242

    Article  CAS  PubMed  Google Scholar 

  13. Jee WS, Yao W (2001) Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact 1(3):193–207

    CAS  PubMed  Google Scholar 

  14. Ito M, Nishida A, Nakamura T, Uetani M, Hayashi K (2002) Differences of three-dimensional trabecular microstructure in osteopenic rat models caused by ovariectomy and neurectomy. Bone 30(4):594–598

    Article  CAS  PubMed  Google Scholar 

  15. Ito M, Nishida A, Aoyagi K, Uetani M, Hayashi K, Kawase M (2005) Effects of risedronate on trabecular microstructure and biomechanical properties in ovariectomized rat tibia. Osteoporos Int 16(9):1042–1048. doi:10.1007/s00198-004-1802-3

    Article  CAS  PubMed  Google Scholar 

  16. Sheng ZF, Dai RC, Wu XP, Fang LN, Fan HJ, Liao EY (2007) Regionally specific compensation for bone loss in the tibial trabeculae of estrogen-deficient rats. Acta Radiol 48(5):531–539. doi:10.1080/02841850701283761

    Article  CAS  PubMed  Google Scholar 

  17. Galea GL, Hannuna S, Meakin LB, Delisser PJ, Lanyon LE, Price JS (2015) Quantification of alterations in cortical bone geometry using site specificity software in mouse models of aging and the responses to ovariectomy and altered loading. Front Endocrinol (Lausanne) 6:52. doi:10.3389/fendo.2015.00052

    Google Scholar 

  18. Abuohashish HM, Ahmed MM, Al-Rejaie SS, Eltahir KE (2015) The antidepressant bupropion exerts alleviating properties in an ovariectomized osteoporotic rat model. Acta Pharmacol Sin 36(2):209–220. doi:10.1038/aps.2014.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bagi CM, Ammann P, Rizzoli R, Miller SC (1997) Effect of estrogen deficiency on cancellous and cortical bone structure and strength of the femoral neck in rats. Calcif Tissue Int 61(4):336–344

    Article  CAS  PubMed  Google Scholar 

  20. Frost HM, Jee WS (1992) On the rat model of human osteopenias and osteoporoses. Bone Miner 18(3):227–236

    Article  CAS  PubMed  Google Scholar 

  21. Kalu DN, Liu CC, Hardin RR, Hollis BW (1989) The aged rat model of ovarian hormone deficiency bone loss. Endocrinology 124(1):7–16. doi:10.1210/endo-124-1-7

    Article  CAS  PubMed  Google Scholar 

  22. Li XJ, Jee WS, Chow SY, Woodbury DM (1990) Adaptation of cancellous bone to aging and immobilization in the rat: a single photon absorptiometry and histomorphometry study. Anat Rec 227(1):12–24. doi:10.1002/ar.1092270103

    Article  CAS  PubMed  Google Scholar 

  23. Martin EA, Ritman EL, Turner RT (2003) Time course of epiphyseal growth plate fusion in rat tibiae. Bone 32(3):261–267. doi:10.1016/s8756-3282(02)00983-3

    Article  CAS  PubMed  Google Scholar 

  24. Mori S, Jee WS, Li XJ, Chan S, Kimmel DB (1990) Effects of prostaglandin E2 on production of new cancellous bone in the axial skeleton of ovariectomized rats. Bone 11(2):103–113

    Article  CAS  PubMed  Google Scholar 

  25. Wronski TJ, Dann LM, Scott KS, Cintron M (1989) Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int 45(6):360–366

    Article  CAS  PubMed  Google Scholar 

  26. Zhang XZ, Kalu DN, Erbas B, Hopper JL, Seeman E (1999) The effects of gonadectomy on bone size, mass, and volumetric density in growing rats are gender-, site-, and growth hormone-specific. J Bone Miner Res 14(5):802–809. doi:10.1359/jbmr.1999.14.5.802

    Article  CAS  PubMed  Google Scholar 

  27. Watkins BA, Li Y, Seifert MF (2006) Dietary ratio of n-6/n-3 PUFAs and docosahexaenoic acid: actions on bone mineral and serum biomarkers in ovariectomized rats. J Nutr Biochem 17(4):282–289. doi:10.1016/j.jnutbio.2005.05.012

    Article  CAS  PubMed  Google Scholar 

  28. Sacco SM, Jiang JM, Reza-Lopez S, Ma DW, Thompson LU, Ward WE (2009) Flaxseed combined with low-dose estrogen therapy preserves bone tissue in ovariectomized rats. Menopause 16(3):545–554. doi:10.1097/gme.0b013e31818fc00a

    Article  PubMed  Google Scholar 

  29. Chen B, Li Y, Yang X, Xie D (2013) Comparable effects of alendronate and strontium ranelate on femur in ovariectomized rats. Calcif Tissue Int 93(5):481–486. doi:10.1007/s00223-013-9765-z

    Article  CAS  PubMed  Google Scholar 

  30. Hohman EE, Weaver CM (2015) A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats. J Nutri 145(2):253–259. doi:10.3945/jn.114.198598

    Article  Google Scholar 

  31. Ma J, Granton PV, Holdsworth DW, Turley EA (2013) Oral administration of hyaluronan reduces bone turnover in ovariectomized rats. J Agric Food Chem 61(2):339–345. doi:10.1021/jf300651d

    Article  CAS  PubMed  Google Scholar 

  32. Sacco SM, Jiang JM, Thompson LU, Ward WE (2012) Flaxseed does not enhance the estrogenic effect of low-dose estrogen therapy on markers of uterine health in ovariectomized rats. J Med Food 15(9):846–850. doi:10.1089/jmf.2011.0314

    Article  CAS  PubMed  Google Scholar 

  33. Kim HK, Lee S, Leem KH (2011) Protective effect of egg yolk peptide on bone metabolism. Menopause 18(3):307–313. doi:10.1097/gme.0b013e3181f31b1f

    Article  PubMed  Google Scholar 

  34. Mathey J, Puel C, Kati-Coulibaly S, Bennetau-Pelissero C, Davicco MJ, Lebecque P, Horcajada MN, Coxam V (2004) Fructooligosaccharides maximize bone-sparing effects of soy isoflavone-enriched diet in the ovariectomized rat. Calcif Tissue Int 75(2):169–179. doi:10.1007/s00223-004-0128-7

    Article  CAS  PubMed  Google Scholar 

  35. Liu XL, Li CL, Lu WW, Cai WX, Zheng LW (2015) Skeletal site-specific response to ovariectomy in a rat model: change in bone density and microarchitecture. Clin Oral Implant Res 26(4):392–398. doi:10.1111/clr.12360

    Article  Google Scholar 

  36. Waarsing JH, Day JS, van der Linden JC, Ederveen AG, Spanjers C, De Clerck N, Sasov A, Verhaar JA, Weinans H (2004) Detecting and tracking local changes in the tibiae of individual rats: a novel method to analyse longitudinal in vivo micro-CT data. Bone 34(1):163–169

    Article  CAS  PubMed  Google Scholar 

  37. Laib A, Kumer JL, Majumdar S, Lane NE (2001) The temporal changes of trabecular architecture in ovariectomized rats assessed by MicroCT. Osteoporos Int 12(11):936–941. doi:10.1007/s001980170022

    Article  CAS  PubMed  Google Scholar 

  38. El Khassawna T, Bocker W, Govindarajan P, Schliefke N, Hurter B, Kampschulte M, Schlewitz G, Alt V, Lips KS, Faulenbach M, Mollmann H, Zahner D, Durselen L, Ignatius A, Bauer N, Wenisch S, Langheinrich AC, Schnettler R, Heiss C (2013) Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat. Plos One 8(8):e71665. doi:10.1371/journal.pone.0071665

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hatori K, Camargos GV, Chatterjee M, Faot F, Sasaki K, Duyck J, Vandamme K (2015) Single and combined effect of high-frequency loading and bisphosphonate treatment on the bone micro-architecture of ovariectomized rats. Osteoporos Int 26(1):303–313. doi:10.1007/s00198-014-2857-4

    Article  CAS  PubMed  Google Scholar 

  40. Kinney JH, Lane NE, Haupt DL (1995) In vivo, three-dimensional microscopy of trabecular bone. J Bone Miner Res 10(2):264–270. doi:10.1002/jbmr.5650100213

    Article  CAS  PubMed  Google Scholar 

  41. Lane NE, Thompson JM, Haupt D, Kimmel DB, Modin G, Kinney JH (1998) Acute changes in trabecular bone connectivity and osteoclast activity in the ovariectomized rat in vivo. J Bone Miner Res 13(2):229–236. doi:10.1359/jbmr.1998.13.2.229

    Article  CAS  PubMed  Google Scholar 

  42. Boyd SK, Davison P, Muller R, Gasser JA (2006) Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 39(4):854–862. doi:10.1016/j.bone.2006.04.017

    Article  PubMed  Google Scholar 

  43. Campbell GM, Buie HR, Boyd SK (2008) Signs of irreversible architectural changes occur early in the development of experimental osteoporosis as assessed by in vivo micro-CT. Osteoporos Int 19(10):1409–1419. doi:10.1007/s00198-008-0581-7

    Article  CAS  PubMed  Google Scholar 

  44. Shin YH, Cho DC, Yu SH, Kim KT, Cho HJ, Sung JK (2012) Histomorphometric analysis of the spine and femur in ovariectomized rats using micro-computed tomographic scan. J Korean Neurosurg Soc 52(1):1–6. doi:10.3340/jkns.2012.52.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li XJ, Jee WSS, Ke HZ, Mori S, Akamine T (1992) Age-related-changes of cancellous and cortical bone histomorphometry in female sprague–dawley rats. Cell Mater (suppl. 1):25–35

  46. Ruff CB, Hayes WC (1982) Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science 217(4563):945–948

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research funding provided by the National Science and Engineering Research Council of Canada and the Canada Foundation for Innovation for purchase of the μCT. W. Ward is a Canada Research Chair in Bone and Muscle Development.

Authors Contribution

A. B. L and W. E. W designed the study. A. B. L conducted the experiments, was responsible for the statistical analysis of the data, prepared the first draft of the paper, and together with W. E. W revised the manuscript. S. M. S determined the radiation dose. P. L. S provided invaluable insight into the analysis software. All authors critically revised the paper and approved the final version. W. E. W is the guarantor of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy E. Ward.

Ethics declarations

Conflict of interest

Amanda B. Longo, Sandra M. Sacco, and Wendy E. Ward declare that they have no conflict of interest. Phil L. Salmon is an Application Scientist employed by Bruker microCT, Kontich, Belgium.

Human and Animal Rights and Informed Consent

This study was approved by the Animal Care Committee of Brock University and conducted in accordance with the guidelines established by the Canadian Council on Animal Care.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longo, A.B., Sacco, S.M., Salmon, P.L. et al. Longitudinal Use of Micro-computed Tomography Does Not Alter Microarchitecture of the Proximal Tibia in Sham or Ovariectomized Sprague–Dawley Rats. Calcif Tissue Int 98, 631–641 (2016). https://doi.org/10.1007/s00223-016-0113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0113-y

Keywords

Navigation