Skip to main content
Log in

Bone Texture Analysis on Direct Digital Radiographic Images: Precision Study and Relationship with Bone Mineral Density at the Os Calcis

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Assessment of bone microarchitecture in complement to bone mineral density (BMD) exam could improve prediction of osteoporotic fractures. A high-resolution X-ray prototype was developed to assess microarchitecture quality. Images were obtained on os calcis; then, three texture parameters were calculated on the same region of interest (ROI): a fractal parameter, a run-length parameter, and a co-occurrence parameter. This work describes the reproducibility of this method. We also examine the relationship between texture parameters and BMD at a site-matched ROI. Measurements on the left heel were performed on 30 healthy women, on the same day, with repositioning for short-term precision error. An additional measurement was done at 1 week to evaluate mid-term precision error on 14 subjects. Os calcis images from 10 healthy women were used to evaluate both intra- and interobserver reproducibility. Thirty other healthy patients were measured successively on two similar devices for interprototype comparison. BMD and texture analyses of the left heel were obtained from 57 women. Short-term precision errors ranged 1.16–1.24% according to the texture parameter. Mid-term precision error was slightly higher than short-term precision for the mean Hurst exponent parameter. Comparisons of texture parameters and BMD at a site-matched ROI on the os calcis showed no significant relationships. The results also show that the use of this high-resolution digital X-ray device improves the reproducibility of parameter measurement compared to the indirect digitization of radiologic films previously used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. World Health Organization (1994) Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis. Technical Report Series 843. WHO, Geneva

    Google Scholar 

  2. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  PubMed  CAS  Google Scholar 

  3. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res 18:1947–1954

    Article  PubMed  Google Scholar 

  4. Ott SM, Kilcoyne RF, Chesnut CH (1987) Ability of four different techniques of measuring bone mass to diagnose vertebral fractures in postmenopausal women. J Bone Miner Res 2:201–210

    PubMed  CAS  Google Scholar 

  5. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(suppl 3):S13–S18

    PubMed  Google Scholar 

  6. Seeman E., Delmas P (2006) Bone quality – the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  PubMed  CAS  Google Scholar 

  7. Consensus Development Conference (1993) Prophylaxis and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  8. Van der Linden JC, Homminga J, Verhaar JAN, Weinans H (2001) Mechanical consequences of bone loss in cancellous bone. J Bone Miner Res 16:457–465

    Article  PubMed  Google Scholar 

  9. Lespessailles E, Chappard C, Bonnet N, Benhamou CL (2006) Imaging techniques for evaluating bone microarchitecture. Joint Bone Spine 73:254–261

    Article  PubMed  Google Scholar 

  10. Veenland JF, Grashuis JL, Weinans H, Ding M, Vrooman HA (2002) Suitability of texture features to assess changes in trabecular bone architecture. Pattern Recognition Lett 23:395–403

    Article  Google Scholar 

  11. Majumdar S, Lin J, Link T, Millard J, Augat P, Ouyang X, Newitt D, Gould R, Kothari M, Genant H (1999) Fractal analysis of radiographs: assessment of trabecular bone structure and prediction of elastic modulus and strength. Med Phys 26:1330–1340

    Article  PubMed  CAS  Google Scholar 

  12. Lin JC, Grampp S, Link T, Kothari M, Newitt DC, Felsenberg D, Majumdar S (1999) Fractal analysis of proximal femur radiographs: correlation with biomechanical properties and bone mineral density. Osteoporos Int 9:516–524

    PubMed  CAS  Google Scholar 

  13. Link TM, Majumdar S, Konermann W, Meier N, Lin JC, Newitt D, Ouyang X, Peters PE, Genant HK (1997) Texture analysis of direct magnification radiographs of vertebral specimens: correlation with bone mineral density and biomechanical properties. Acad Radiol 4:167–176

    Article  PubMed  CAS  Google Scholar 

  14. Pothuaud L, Benhamou CL, Porion P, Lespessailles E, Harba R, Levitz P (2000) Fractal dimension of trabecular bone projection texture is related to three-dimensional microarchitecture. J Bone Miner Res 15:691–699

    Article  PubMed  CAS  Google Scholar 

  15. Guggenbuhl P, Bodic F, Hamel L, Baslé MF, Chappard D (2006) Texture analysis of X-ray radiographs of iliac bone is correlated with bone micro-CT. Osteoporos Int 17:447–454

    Article  PubMed  CAS  Google Scholar 

  16. Luo G, Kinney JH, Kaufman JJ, Haupt D, Chiabrera A, Siffert RS (2000) Relationship between plain radiographic patterns and three-dimensional trabecular architecture. J Bone Miner Res 9:339–345

    Google Scholar 

  17. Benhamou CL, Poupon S, Lespessailles E, Loiseau S, Jennanne R, Siroux V, Ohley W, Pothuaud L (2001) Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 16:697–704

    Article  PubMed  CAS  Google Scholar 

  18. Black DM, Steinbuch M, Palermo L, Dargent-Molina P, Linday R, Hoseyni MS, Johnell O (2001) An assessment tool for predicting fracture risk in postmenopausal women. Osteoporos Int 12:519–528

    Article  PubMed  CAS  Google Scholar 

  19. Dempster D (2000) The contribution of trabecular architecture to cancellous bone quality [editorial]. J Bone Miner Res 15:20–23

    Article  PubMed  CAS  Google Scholar 

  20. Recker R, Masarachia P, Santora A, Howard T, Chavassieux P, Arlot M, Rodan G, Wehren, Kimmel D (2005) Trabecular bone microarchitecture after alendronate treatment of osteoporotic women. Curr Med Res Opin 21:185–194

    Article  PubMed  CAS  Google Scholar 

  21. Borah B, Dufresne TE, Chmielewski PA, Johnson TD, Chines A, Manhart MD (2004) Risedronate preserves bone architecture in postmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography. Bone 34:736–746

    Article  PubMed  CAS  Google Scholar 

  22. Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF (2003) Recombinant human parathyroid hormone (1–34) (teriparatide) improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–1941

    Article  PubMed  CAS  Google Scholar 

  23. Benhamou CL, Chappard C, Gadois C, Lemineur G, Lespessailles E, de Vernejoul MC, Fardellone P, Delmas P, Weryha G, Harba R (2004) Characterization of trabecular micro-architecture improvement under teriparatide by a fractal analysis of texture on calcaneus radiographs. J Bone Miner Res 19(suppl 1):S126

    Google Scholar 

  24. Benhamou CL, Lespessailles E, Jacquet G, Harba R, Jennane R, Loussot T, Tourliere D, Ohley W (1994) Fractal organization of trabecular bone images on os calcis radiographs. J Bone Miner Res 9:1909–1918

    Article  PubMed  CAS  Google Scholar 

  25. Lespessailles E, Roux JP, Benhamou CL, Arlot ME, Eynard E, Harba R, Padonou C, Meunier JP (1998) Fractal analysis of bone texture on os calcis radiographs compared with trabecular microarchitecture analyzed by histomorphometry. Calcif Tissue Int 63:121–125

    Article  PubMed  CAS  Google Scholar 

  26. Lespessailles E, Jullien A, Eynard E, Harba R, Jacquet G, Ildefonse JP, Ohley W, Benhamou CL (1998) Biomechanical properties of human os calcanei: relationships with bone density and fractal evaluation of bone microarchitecture. J Biomech 31:817–824

    Article  PubMed  CAS  Google Scholar 

  27. Pothuaud L, Lespessailles E, Harba R, Jennane R, Royant V, Eynard E, Benhamou CL (1998) Fractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis. Osteoporos Int 8:618–625

    Article  PubMed  CAS  Google Scholar 

  28. Lundahl T, Ohley WJ, Kay SM, Siffert R (1986) Fractional brownian motion: a maximum likelihood estimator and list application to image texture. IEEE Trans Med Imaging 5:152–161

    Article  PubMed  CAS  Google Scholar 

  29. Haralick R (1986) Statistical image texture analysis. In: Handbook of Pattern Recognition and Image Processing. Academic Press, San Diego, pp 247–279

  30. Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Proc 4:172–179

    Google Scholar 

  31. Chu A, Sehgal CM, Greenleaf JF (1990) Use of gray value distribution of run lengths for texture analysis. Pattern Recognition Lett 11:415–419

    Article  Google Scholar 

  32. Glüer CG, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270

    Article  PubMed  Google Scholar 

  33. Economos CD, Nelson NE, Fiatorone MA, Dallal GE, Heymsfield SB, Wang J, Russel-Autet M, Yasumura S, Vaswani AN, Pierson RN (1996) A multicenter comparison of dual energy X-ray absorptiometers: in vivo and in vitro measurements of bone mineral content and density. J Bone Miner Res 11:275–285

    PubMed  CAS  Google Scholar 

  34. Pouilles JM, Tremollières F, Todorovsky N, Ribot C (1991) Precision and sensitivity of dual-energy X-ray absorptiometry in spinal osteoporosis. J Bone Miner Res 6:997–1002

    PubMed  CAS  Google Scholar 

  35. Brooke-Wavell K, Jones PRM, Pye DW (1995) Ultrasound and dual X-ray absorptiometry measurement of the os calcis: influence of region of interest location. Calcif Tissue Int 57:20–24

    Article  PubMed  CAS  Google Scholar 

  36. Evans WD, Jones EA, Owen GM (1995) Factors affecting the in vivo precision of broadband ultrasonic attenuation. Phys Med Biol 40:137–151

    Article  PubMed  CAS  Google Scholar 

  37. Greenspan SL, Maitland R, Myers E (1996) Classification of osteoporosis in the elderly is dependent on site specific analysis. Calcif Tissue Int 58:409–414

    Article  PubMed  CAS  Google Scholar 

  38. Lespessailles E, Poupon S, Niamane R, Loiseau-Peres S, Derommelaere G, Harba R, Courteix D, Benhamou CL (2002) Fractal analysis of trabecular bone texture on os calcis radiographs: effects of age, time since menopause and hormone replacement therapy. Osteoporos Int 11:366–372

    Article  Google Scholar 

Download references

Acknowledgment

This work was made possible by grants from Programme Hospitalier de Recherche Clinique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lespessailles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lespessailles, E., Gadois, C., Lemineur, G. et al. Bone Texture Analysis on Direct Digital Radiographic Images: Precision Study and Relationship with Bone Mineral Density at the Os Calcis. Calcif Tissue Int 80, 97–102 (2007). https://doi.org/10.1007/s00223-006-0216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-006-0216-y

Keywords

Navigation