Skip to main content
Log in

Production of organic acids by Lactobacillus strains in three different media

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Ten strains of Lactobacillus (Lb). casei, Lb. rhamnosus, Lb. plantarum, Lb. paracasei and Lb. curvatus species were chosen to determine the production of organic acids after cultivation in skimmed milk, MRS broth and Jerusalem artichoke (JA) medium. The highest acidity was obtained in MRS broth and the weakest acidification was found in skimmed milk. Lb. casei Shirota produced the highest amount and Lb. rhamnosus VT1 the lowest amount of substances being estimated as titratable acidity. All strains produced lactic acid in the investigated broth and most of the strains produced acetic acid in MRS broth except Lb. curvatus 2768 and Lb. casei Shirota, in JA broth except Lb. paracasei SF1 and in skimmed milk except Lb. casei 2750, Lb. curvatus 2768, Lb. curvatus 2775 and Lb. casei Shirota. All strains, except Lb. plantarum 01, produced butyric acid in MRS broth. Beside the lactic and acetic acids, formic, citric, succinic and glutamic acids were also produced in MRS broth; formic and succinic acids were produced in skimmed milk and succinic acid in JA broth. Some strains showed change in their fermentation profile from homofermentative to mix-acid fermentation in milk. The antifungal efficiency of the lactic and acetic acid in the amount produced by lactobacilli was investigated. None of the investigated aspergilli were inhibited. The inhibitory effect of acids against Fusarium increased unequivocally with the increasing concentration. The study pointed at the dissimilarity of organic acid production of Lactobacillus strains, which was considerably influenced by the media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holzapfel WH, Geisen R, Schillinger U (1995) Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int J Food Microbiol 24:343–362

    Article  CAS  Google Scholar 

  2. Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–16

    Article  CAS  Google Scholar 

  3. Stiles ME (1996) Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek 70:331–345

    Article  CAS  Google Scholar 

  4. Vermeiren L, Devlieghere F, Debevere J (2004) Evaluation of meat born lactic acid bacteria as protective cultures for the biopreservation of cooked meat products. Int J Food Microbiol 96:149–164

    Article  CAS  Google Scholar 

  5. Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29

    Article  CAS  Google Scholar 

  6. Ouwehand AC (1998) In: Salminen S, von Wright A (eds) Lactic acid bacteria: microbiology and functional aspects, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  7. Corsetti A, Gobetti M, Rossi J, Daminiani P (1998) Antimould activity of sourdough lactic acid bacteria: identification of mixture of organic acids by Lactobacillus sanfrancisco CB1. Appl Microbiol Biotechnol 50:253–256

    Article  CAS  Google Scholar 

  8. Rodrígues E, Tomillo J, Nuñez M, Medina M (1997) Combined effect of bacteriocin-producing lactic acid bacteria and lactoperoxidase system activation on Listeria monocytogenes in refrigerated milk. J Appl Environ Microbiol 83:389–395

    Article  Google Scholar 

  9. Ito A, Sato Y, Kudo S, Sato S, Nakajima H, Toba T (2003) The screening of hydrogen peroxide-producing lactic acid bacteria and their application to inactivating psychrotrophic food-borne pathogens. Curr Microbiol 47:231–236

    Article  CAS  Google Scholar 

  10. Ammor S, Tauveron G, Dufour E, Chevallier I (2006) Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility 1-screening and characterization of the antibacterial compounds. Food Control 17:454–461

    Article  CAS  Google Scholar 

  11. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  Google Scholar 

  12. Plocková M, Stiles J, Chumchalová J, Halfarová R (2001) Control of mould growth by Lactobacillus rhamnosus VT1 and Lactobacillus reuteri CCM 3625 on milk agar plates. Czech J Food Sci 19:46–50

    Google Scholar 

  13. Tomás MS, Bru E, Wiese B, de Ruiz Holgado AAP, Nader-Macías ME (2002) Influence of pH, temperature and culture media on the growth and bacteriocin production by vaginal Lactobacillus salivarius CRL 1328. J Appl Microbiol 93:714–724

    Article  Google Scholar 

  14. Avonts L, Van Uytven E, De Vuyst L (2004) Cell growth and bacteriocin production of probiotic Lactobacillus strains in different media. Int Dairy J 14:947–955

    Article  CAS  Google Scholar 

  15. Zalán Zs, Németh E, Baráth Á, Halász A (2005) Influence of growth medium on hydrogen peroxide and bacteriocin production of Lactobacillus strains. Food Technol Biotechnol 43:219–225

    Google Scholar 

  16. Gourama H, Bullerman LB (1997) Anti-aflatoxigenic activity of Lactobacillus casei pseudoplantarum. Int J Food Microbiol 34:131–143

    Article  CAS  Google Scholar 

  17. Božanić R, Tratnik LJ, Hruškar M (2003) Influence of culture activity on aroma components in yoghurts produced from goat’s and cow’s milk. Acta Aliment Hung 32:151–160

    Article  Google Scholar 

  18. Taniwaki MH, Hocking AD, Pitt JI, Fleet GH (2001) Growth of fungi and mycotoxin production on cheese under modified atmospheres. Int J Food Microbiol 68:125–133

    Article  CAS  Google Scholar 

  19. Tournas VH, Heeres J, Burgess L (2006) Moulds and yeasts in fruit salads and fruit juices. Food Microbiol 23:684–688

    Article  CAS  Google Scholar 

  20. Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    Article  CAS  Google Scholar 

  21. Prajapati JB, Nair BM (2003) In: Farnworth ER (ed) Handbook of fermented functional foods. CRC Press, Boca Raton

    Google Scholar 

  22. Mäyrä-Mäkinen A, Bigret M (2004) In: Salminen S, Von Wright A, Ouwehand A (eds) Lactic acid bacteria: microbiological and functional aspects. CRC Press, Boca Raton

    Google Scholar 

  23. Kaplan H, Hutkins RW (2003) Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195. Appl Environ Microbiol 69:2217–2222

    Article  CAS  Google Scholar 

  24. Makras L, Van Acker G, De Vuyst L (2005) Lactobacillus paracasei subsp. paracasei 8700:2 degrades inulin-type fructans exhibiting different degrees of polymerization. Appl Environ Microbiol 71:6531–6537

    Article  CAS  Google Scholar 

  25. Goh YJ, Zhang C, Benson AK, Schlegel V (2006) Identification of a putative operon involved in fructooligosaccharide utilization by Lactobacillus paracasei. Appl Environ Microbiol 72:7518–7530

    Article  CAS  Google Scholar 

  26. Bajpai P, Margaritis A (1982) Ethanol inhibition kinetics of Kluyveromyces marxianus grown on Jerusalem artichoke juice. Appl Environ Microbiol 44:1325–1329

    CAS  Google Scholar 

  27. Vandamme EJ, Derycke DG (1983) Microbial inulinases: fermentation process, properties and applications. Adv Appl Microbiol 29:139–176

    Article  CAS  Google Scholar 

  28. Fuchs A, De Bruyn JM, Niedeveld CJ (1985) Bacteria and yeasts as possible candidates for the production of inulinases and levanases. Antonie van Leeuwenhoek 51:333–351

    Article  CAS  Google Scholar 

  29. Drent WJ, Lahpor GA, Wiegant WM, Gottschal JC (1991) Fermentation of inulin by Clostridium thermosuccinogenes sp. nov., a thermophilic anaerobic bacterium isolated from various habitats. Appl Environ Microbiol 57:455–462

    CAS  Google Scholar 

  30. Yokoi KJ, Kawasaki KI, Nishitani G, Taketo A, Kodaira KI (2006) Fermentation of Jerusalem artichoke with or without lactic acid bacteria starter cultures. Food Sci Technol Res 12:231–234

    Article  CAS  Google Scholar 

  31. De Man JD, Rogosa M, Sharpe ME (1960) A medium for the cultivation of Lactobacilli. J Appl Bacteriol 23:130–135

    Google Scholar 

  32. Axelsson L (1998) In: Salminen S, von Wright A (eds) Lactic acid bacteria: microbiology and functional aspects, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  33. Røssland E, Langsrud T, Granum PE, Sbrhaug T (2005) Production of antimicrobial metabolites by strains of Lactobacillus or Lactococcus co-cultured with Bacillus cereus in milk. Int J Food Microbiol 98:193–200

    Article  Google Scholar 

  34. Álvarez-Martín P, Flórez AB, Hernández-Barranco A, Mayo B (2008) Interaction between dairy yeasts and lactic acid bacteria strains during milk fermentation. Food Control 19:62–70

    Article  Google Scholar 

  35. Oude Elferink SJWH, Krooneman J, Gottschal JC, Spoelstra SF, Faber F, Driehuis F (2001) Anaerobic conversion of lactic acid to acetic acid and 1, 2-Propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67:125–132

    Article  CAS  Google Scholar 

  36. Palles T, Beresford T, Condon S, Cogan TM (1998) Citrate metabolism in Lactobacillus casei and Lactobacillus plantarum. J Appl Microbiol 85:147–154

    Article  CAS  Google Scholar 

  37. Díaz-Muñiz I, Steele JL (2006) Conditions required for citrate utilization during growth of Lactobacillus casei ATCC334 in chemically defined medium and Cheddar Cheese extract. Antonie van Leeuwenhoek 90:233–243

    Article  Google Scholar 

  38. Torino MI, Taranto MP, Font de Valdez G (2001) Mixed-acid fermentation and polysaccharide production by Lactobacillus helveticus in milk cultures. Biotechnol Lett 23:1799–1802

    Article  CAS  Google Scholar 

  39. Starrenburg MJC, Hugenholtz J (1991) Citrate fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol 57:3535–3540

    CAS  Google Scholar 

  40. Whitley K, Marshall VM (1999) Heterofermentative metabolism of glucose and ribose and utilisation of citrate by the smooth biotype of Lactobacillus amylovorus NCFB 2745. Antonie van Leeuwenhoek 75:217–223

    Article  CAS  Google Scholar 

  41. Torino MI, Taranto MP, Font de Valdez G (2005) Citrate catabolism and production of acetate and succinate by Lactobacillus helveticus ATCC 15807. Appl Microbiol Biotechnol 69:79–85

    Article  CAS  Google Scholar 

  42. Kaneuchi C, Seki M, Komagata K (1988) Production of succinic acid from citric acid and related acids by Lactobacillus strains. Appl Environ Microbiol 54:3053–3056

    CAS  Google Scholar 

  43. Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD1 ratio. J Bacteriol 179:5282–5287

    CAS  Google Scholar 

  44. Freitas AC, Pintado AE, Pintado ME, Malcata FX (1999) Organic acids produced by lactobacilli, enterococci and yeasts isolated from Picante cheese. Eur Food Res Technol 209:434–438

    Article  CAS  Google Scholar 

  45. Higgins C, Brinkhaus F (1999) Efficacy of several organic acids against molds. J Appl Poult Res 8:480–487

    CAS  Google Scholar 

  46. Corsetti A, Settanni L (2007) Lactobacilli in sourdough fermentation. Food Res Int 40:539–558

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grant CZ-HU 5/2004, CZ-HU 11/2006 Bilateral Intergovernmental S&T Cooperation by National Office for Research and Technology (Hungary) and MŠMT 6046137305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Zalán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalán, Z., Hudáček, J., Štětina, J. et al. Production of organic acids by Lactobacillus strains in three different media. Eur Food Res Technol 230, 395–404 (2010). https://doi.org/10.1007/s00217-009-1179-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-009-1179-9

Keywords

Navigation