Skip to main content

Advertisement

Log in

The development of plasma pseudotargeted GC-MS metabolic profiling and its application in bladder cancer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bladder cancer (BC) is a fatal malignancy with considerable mortality. BC urinary metabolomics has been extensively investigated for biomarker discovery, but few BC blood metabolomic studies have been performed. Hence, a plasma pseudotargeted metabolomic method based on gas chromatography–mass spectrometry with selected ion monitoring (GC-MS-SIM) was developed to study metabolic alterations in BC. The analytical performance of the developed method was compared with that of a nontargeted method. The relative standard deviation (RSD) values of 89 and 70.7 % of the peaks obtained using the pseudotargeted and nontargeted methods, respectively, were less than 20 %. The Pearson correlations of 90.7 and 78.3 % of the peaks obtained using the pseudotargeted and nontargeted methods, respectively, exceeded 0.90 in the linearity evaluation. Compared with the nontargeted method, the signal-to-noise ratios (S/N) of 97.9 and 69.3 % of the peaks increased two- and fivefold, respectively. The developed method was fully validated, with good precision, recovery, and stability of the trimethylsilyl (TMS) derivatives. The method was applied to investigate BC. Significant increases in the contents of metabolites involved in, for example, the pentose phosphate pathway (PPP) and nucleotide and fatty acid synthesis were found in the high-grade (HG) BC group compared to the healthy control (HC) group. These differences imply that the activated PPP may regulate BC cell proliferation by promoting lipid and nucleotide biosynthesis and the detoxification of reactive oxygen species (ROS). These results illustrate that the plasma pseudotargeted method is a powerful tool for metabolic profiling.

The plasma pseudotargeted metabolic profiling suggested the metabolic alterations in bladder cancer (BC) and the significantly differential metabolites for BC discrimination

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. doi:10.1002/ijc.29210.

    Article  CAS  Google Scholar 

  2. Burger M, Catto JW, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013;63(2):234–41. doi:10.1016/j.eururo.2012.07.033.

    Article  Google Scholar 

  3. Bansal N, Gupta A, Mitash N, Shakya PS, Mandhani A, Mahdi AA, et al. Low- and high-grade bladder cancer determination via human serum-based metabolomics approach. J Proteome Res. 2013;12(12):5839–50. doi:10.1021/pr400859w.

    Article  CAS  Google Scholar 

  4. Conde VR, Oliveira PF, Nunes AR, Rocha CS, Ramalhosa E, Pereira JA, et al. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism. Exp Cell Res. 2015;335(1):91–8. doi:10.1016/j.yexcr.2015.04.007.

    Article  CAS  Google Scholar 

  5. Chan EC, Pasikanti KK, Hong Y, Ho PC, Mahendran R, Raman Nee Mani L, et al. Metabonomic profiling of bladder cancer. J Proteome Res. 2015;14(2):587–602. doi:10.1021/pr500966h.

    Article  CAS  Google Scholar 

  6. Hurle R, Losa A, Manzetti A, Lembo A. Upper urinary tract tumors developing after treatment of superficial bladder cancer: 7-year follow-up of 591 consecutive patients. Urology. 1999;53(6):1144–8.

    Article  CAS  Google Scholar 

  7. Fiehn O. Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol. 2002;48:155–71.

    Article  CAS  Google Scholar 

  8. Cao M, Zhao L, Chen H, Xue W, Lin D. NMR-based metabolomic analysis of human bladder cancer. Anal Sci. 2012;28(5):451–6.

    Article  CAS  Google Scholar 

  9. Huang Z, Lin L, Gao Y, Chen Y, Yan X, Xing J et al. Bladder cancer determination via two urinary metabolites: a biomarker pattern approach. Mol Cell Proteomics. 2011;10(10):M111 007922. doi:10.1074/mcp.M111.007922.

  10. Huang Z, Chen Y, Hang W, Gao Y, Lin L, Li DY, et al. Holistic metabonomic profiling of urine affords potential early diagnosis for bladder and kidney cancers. Metabolomics. 2012;9(1):119–29. doi:10.1007/s11306-012-0433-5.

    Article  Google Scholar 

  11. Alberice JV, Amaral AF, Armitage EG, Lorente JA, Algaba F, Carrilho E, et al. Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry metabolomics approach. J Chromatogr A. 2013;1318:163–70. doi:10.1016/j.chroma.2013.10.002.

    Article  CAS  Google Scholar 

  12. Jin X, Yun SJ, Jeong P, Kim IY, Kim W-J, Park S. Diagnosis of bladder cancer and prediction of survival by urinary metabolomics. Oncotarget. 2014;5(6):1635–45.

    Article  Google Scholar 

  13. Peng J, Chen YT, Chen CL, Li L. Development of a universal metabolome-standard method for long-term LC-MS metabolome profiling and its application for bladder cancer urine-metabolite-biomarker discovery. Anal Chem. 2014;86(13):6540–7. doi:10.1021/ac5011684.

    Article  CAS  Google Scholar 

  14. Putluri N, Shojaie A, Vasu VT, Vareed SK, Nalluri S, Putluri V, et al. Metabolomic profiling reveals potential markers and bioprocesses altered in bladder cancer progression. Cancer Res. 2011;71(24):7376–86. doi:10.1158/0008-5472.CAN-11-1154.

    Article  CAS  Google Scholar 

  15. Walsh MC, Brennan L, Malthouse JPG, Roche HM, Gibney MJ. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr. 2006;84:531–9.

    CAS  Google Scholar 

  16. Lin L, Huang Z, Gao Y, Chen Y, Hang W, Xing J, et al. LC-MS-based serum metabolic profiling for genitourinary cancer classification and cancer type-specific biomarker discovery. Proteomics. 2012;12(14):2238–46. doi:10.1002/pmic.201200016.

    Article  CAS  Google Scholar 

  17. Pasikanti KK, Ho PC, Chan EC. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J Chromatogr B, Anal Technol Biomed Life Sci. 2008;871(2):202–11. doi:10.1016/j.jchromb.2008.04.033.

    Article  CAS  Google Scholar 

  18. Zeigler C, Macnamara K, Wang Z, Robbat Jr A. Total alkylated polycyclic aromatic hydrocarbon characterization and quantitative comparison of selected ion monitoring versus full scan gas chromatography/mass spectrometry based on spectral deconvolution. J Chromatogr A. 2008;1205(1-2):109–16. doi:10.1016/j.chroma.2008.07.086.

    Article  CAS  Google Scholar 

  19. Robinson MD, De Souza DP, Keen WW, Saunders EC, McConville MJ, Speed TP, et al. A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments. BMC Bioinformatics. 2007;8:419. doi:10.1186/1471-2105-8-419.

    Article  Google Scholar 

  20. Li Y, Ruan Q, Ye G, Lu X, Lin X, Xu G. A novel approach to transforming a non-targeted metabolic profiling method to a pseudo-targeted method using the retention time locking gas chromatography/mass spectrometry-selected ions monitoring. J Chromatogr A. 2012;1255:228–36. doi:10.1016/j.chroma.2012.01.076.

    Article  CAS  Google Scholar 

  21. Ye G, Liu Y, Yin P, Zeng Z, Huang Q, Kong H, et al. Study of induction chemotherapy efficacy in oral squamous cell carcinoma using pseudotargeted metabolomics. J Proteome Res. 2014;13(4):1994–2004. doi:10.1021/pr4011298.

    Article  CAS  Google Scholar 

  22. Zhao Y, Zhao C, Lu X, Zhou H, Li Y, Zhou J, et al. Investigation of the relationship between the metabolic profile of tobacco leaves in different planting regions and climate factors using a pseudotargeted method based on gas chromatography/mass spectrometry. J Proteome Res. 2013;12(11):5072–83. doi:10.1021/pr400799a.

    Article  CAS  Google Scholar 

  23. Zhao Y, Zhang L, Zhao C, Hu C, Li Y, Zhao J, et al. Metabolic responses of rice leaves and seeds under transgenic backcross breeding and pesticide stress by pseudotargeted metabolomics. Metabolomics. 2015;11(6):1802–14. doi:10.1007/s11306-015-0834-3.

    Article  CAS  Google Scholar 

  24. Zhao Y, Zhao J, Zhao C, Zhou H, Li Y, Zhang J, et al. A metabolomics study delineating geographical location-associated primary metabolic changes in the leaves of growing tobacco plants by GC-MS and CE-MS. Sci Rep. 2015;5:16346. doi:10.1038/srep16346.

    Article  CAS  Google Scholar 

  25. Zhao J, Zhao Y, Hu C, Zhao C, Zhang J, Li L, et al. Metabolic profiling with gas chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry reveals the carbon-nitrogen status of tobacco leaves across different planting areas. J Proteome Res. 2016;15(2):468–76. doi:10.1021/acs.jproteome.5b00807.

    Article  CAS  Google Scholar 

  26. Storey JD. A direct approach to false discovery rates. J R Stat Soc B. 2002;64:479–98.

    Article  Google Scholar 

  27. Currie E, Schulze A, Zechner R, Walther Tobias C, Farese RV. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153–61. doi:10.1016/j.cmet.2013.05.017.

    Article  CAS  Google Scholar 

  28. Sugino T, Baba K, Hoshi N, Aikawa K, Yamaguchi O, Suzuki T. Overexpression of fatty acid synthase in human urinary bladder cancer and combined expression of the synthase and Ki-67 as a predictor of prognosis of cancer patients. Med Mol Morphol. 2011;44(3):146–50. doi:10.1007/s00795-010-0517-0.

    Article  CAS  Google Scholar 

  29. Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ, et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol. 2013;15(8):991–1000. doi:10.1038/ncb2789.

    Article  CAS  Google Scholar 

  30. Jiang P, Du W, Wu M. Regulation of the pentose phosphate pathway in cancer. Protein Cell. 2014;5(8):592–602. doi:10.1007/s13238-014-0082-8.

    Article  CAS  Google Scholar 

  31. Liu PF, Cao YW, Jiang HP, Wang YH, Yang XC, Wang XS, et al. Heterogeneity research in muscle-invasive bladder cancer based on differential protein expression analysis. Med Oncol. 2014;31:21. doi:10.1007/s12032-014-0021-9.

    Article  Google Scholar 

  32. Langbein S, Zerilli M, zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N, et al. Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer. 2006;94(4):578–85. doi:10.1038/sj.bjc.6602962.

    Article  CAS  Google Scholar 

  33. Semilia M, Hennenlotter J, Pavone C, Bischoff T, Kühs U, Gakis G, et al. Expression patterns and prognostic role of transketolase-like 1 in muscle-invasive bladder cancer. World J Urol. 2015;33(10):1403–9. doi:10.1007/s00345-014-1473-4.

    Article  CAS  Google Scholar 

  34. Li HD, Xu QS, Liang YZ. Random frog: an efficient reversible jump Markov Chain Monte Carlo-like approach for variable selection with applications to gene selection and disease classification. Anal Chim Acta. 2012;740:20–6. doi:10.1016/j.aca.2012.06.031.

    Article  CAS  Google Scholar 

  35. Picard RR, Cook RD. Cross-validation of regression models. J Am Stat Assoc. 1984;79(387):575–83. doi:10.1080/01621459.1984.10478083.

    Article  Google Scholar 

  36. Xu Q-S, Liang Y-Z. Monte Carlo cross validation. Chemom Intell Lab. 2001;56:1–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study has been supported by the foundations (No. 21435006, No. 21375127) and the creative research group project (No. 21321064) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Lu or Chuanliang Xu.

Ethics declarations

This research was approved by the ethics committee of the Shanghai Changhai Hospital, China. All the participants signed informed consent forms.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Yang Zhou and Ruixiang Song contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 773 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Song, R., Zhang, Z. et al. The development of plasma pseudotargeted GC-MS metabolic profiling and its application in bladder cancer. Anal Bioanal Chem 408, 6741–6749 (2016). https://doi.org/10.1007/s00216-016-9797-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9797-0

Keywords

Navigation