Skip to main content
Log in

Identification and analytical characteristics of synthetic cannabinoids with an indazole-3-carboxamide structure bearing a N-1-methoxycarbonylalkyl group

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Illicit new psychoactive substances (NPS) are a serious threat to health throughout the world. Such NPS do not usually pass preliminary pharmacological trials. In 2014, we identified a series of five new synthetic cannabinoids with an indazole-3-carboxamide structure bearing an N-1-methoxycarbonylalkyl group. The compounds have very high cannabimimetic activity which has caused mass severe intoxication and deaths. The compounds were identified by means of gas chromatography–mass spectrometry (GC–MS), including high-resolution mass spectrometry (GC–HRMS), ultra-high-performance liquid chromatography–high-resolution tandem mass spectrometry (UHPLC–HRMS2), and 1H and 13C nuclear magnetic resonance spectroscopy (NMR). The peculiarities of mass-spectral fragmentation of the compounds after electron ionization (EI) ionization and collision-induced dissociation (CID) were studied. The analytical characteristics reported for the compounds will enable their identification in a variety of materials seized from criminals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. United Nation Office on Drugs and Crime (UNODC) (2013) World Drug Report 2013. http://www.unodc.org/unodc/secured/wdr/wdr2013/World_Drug_Report_2013.pdf. Accessed 21 Dec 2014

  2. United Nation Office on Drugs and Crime (UNODC) (2013) The challenge of new psychoactive substances. A Report from the Global SMART Programme March 2013. http://www.unodc.org/documents/scientific/NPS_2013_SMART.pdf. Accessed 21 Dec 2014

  3. Seely KA, Patton AL, Moran CL, Womack ML, Prather PL, Fantegrossi WE, Radominska-Pandya A, Endres GW, Channell KB, Smith NH, McCain KR, James LP, Moran JH (2013) Forensic investigation of K2, Spice, and “bath salt” commercial preparations: A three-year study of new designer drug products containing synthetic cannabinoid, stimulant, and hallucinogenic compounds. Forensic Sci Int 233:416–422

    Article  CAS  Google Scholar 

  4. Brandt SD, King LA, Evans-Brown M (2014) The new drug phenomenon. Drug Test Anal 6:587–597

    Article  CAS  Google Scholar 

  5. ElSohly MA, Gul W, Wanas AS, Radwan MM (2014) Synthetic cannabinoids: Analysis and metabolites. Life Sci 97:78–90

    Article  CAS  Google Scholar 

  6. Znaleziona J, Ginterová P, Petr J, Ondra P, Válka I, Ševčik J, Chrastina J, Maier V (2015) Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques – a review. Anal Chim Acta. doi:10.1016/j.aca.2014.12.055

    Google Scholar 

  7. Mazzarino M, de la Torre X, Botrè F (2014) A liquid chromatography–mass spectrometry method based on class characteristic fragmentation pathways to detect the class of indole-derivative synthetic cannabinoids in biological samples. Anal Chim Acta 837:70–82

    Article  CAS  Google Scholar 

  8. Gwak S, Arroyo-Mora LE, Almirall JR (2015) Qualitative analysis of seized synthetic cannabinoids and synthetic cathinones by gas chromatography triple quadrupole tandem mass spectrometry. Drug Test Anal 7:121–130

    Article  CAS  Google Scholar 

  9. Nakajima J, Takahashi M, Seto T, Kanai C, Suzuki J, Yoshida M, Hamano T (2011) Identification and quantitation of two benzoylindoles AM-694 and (4-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone, and three cannabimimetic naphthoylindoles JWH-210, JWH-122, and JWH-019 as adulterants in illegal products obtained via the Internet. Forensic Toxicol 29:95–110

    Article  CAS  Google Scholar 

  10. Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2011) Identification and quantitation of two cannabimimetic phenylacetylindoles JWH-251 and JWH-250, and four cannabimimetic naphthoylindoles JWH-081, JWH-015, JWH-200, and JWH-073 as designer drugs in illegal products. Forensic Toxicol 29:25–37

    Article  CAS  Google Scholar 

  11. Kneisel S, Bisel P, Brecht V, Broecker S, Müller M, Auwärter V (2012) Identification of the cannabimimetic AM-1220 and its azepane isomer (N-methylazepan-3-yl)-3-(1-naphthoyl)indole in a research chemical and several herbal mixtures. Forensic Toxicol 30:126–134

    Article  CAS  Google Scholar 

  12. Westphal F, Sönnichsen FD, Thiemt S (2012) Identification of 1-butyl-3-(1-(4-methyl)naphthoyl)indole in a herbal mixture. Forensic Sci Int 215:8–13

    Article  CAS  Google Scholar 

  13. Jankovics P, Varadi A, Tolgyesi L, Lohner S, Nemeth-Palotas J, Balla J (2012) Detection and identification of the new potential synthetic cannabinoids 1-pentyl-3-(2-iodobenzoyl)indole and 1-pentyl-3-(1-adamantoyl)indole in seized bulk powders in Hungary. Forensic Sci Int 214:27–32

    Article  CAS  Google Scholar 

  14. Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in illegal products. Forensic Toxicol 30:114–125

    Article  CAS  Google Scholar 

  15. Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) URB-754: a new class of designer drug and 12 synthetic cannabinoids detected in illegal products. Forensic Sci Int 227:21–32

    Article  CAS  Google Scholar 

  16. Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Morzherin Y, Shafran Y (2013) Identification and analytical properties of new synthetic cannabimimetics bearing 2,2,3,3-tetramethylcyclopropanecarbonyl moiety. Forensic Sci Int 226:62–73

    Article  CAS  Google Scholar 

  17. Hermanns-Clausen M, Kneisel S, Hutter M, Szabo B, Auwärter V (2013) Acute intoxication by synthetic cannabinoids – Four case reports. Drug Test Anal 5:790–794

    Article  CAS  Google Scholar 

  18. Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Shafran Y (2013) Analytical characterization of some synthetic cannabinoids, derivatives of indole-3-carboxylic acid. Forensic Sci Int 232:1–10

    Article  CAS  Google Scholar 

  19. Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Morzherin Y, Shafran Y (2014) 3-Naphthoylindazoles and 2-naphthoylbenzoimidazoles as novel chemical groups of synthetic cannabinoids: Chemical structure elucidation, analytical characteristics and identification of the first representatives in smoke mixtures. Forensic Sci Int 242:72–80

    Article  CAS  Google Scholar 

  20. Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Baranovsky A, Shafran Y (2014) Synthetic cannabinoids as designer drugs: New representatives of indol-3-carboxylates series and indazole-3-carboxylates as novel group of cannabinoids. Identification and analytical data. Forensic Sci Int 244:263–275

    Article  CAS  Google Scholar 

  21. Buchler IP, Hayes MJ, Hedge SG, Hockerman SL, Jones DE, Kortum SW, Rico JG, Tenbrink RE, Wu KK (2009) Indazole derivatives. WO Patent 106982

  22. Buchler IP, Hayes MJ, Hedge SG, Hockerman SL, Jones DE, Kortum SW, Rico JG, Tenbrink RE, Wu KK (2009) Indazole derivatives. WO Patent 106980

  23. Uchiyama N, Matsuda S, Wakana D, Kikura-Hanajiri R, Goda Y (2013) New cannabimimetic indazole derivatives, N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA) and N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (AB-FUBINACA), identified as designer drugs. Forensic Toxicol 31:93–100

    Article  CAS  Google Scholar 

  24. Uchiyama N, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) Two new-type cannabimimetic quinolinyl carboxylates, QUPIC and QUCHIC, two new cannabimimetic carboxamide derivatives, ADB-FUBINACA and ADBICA, and five synthetic cannabinoids detected with a thiophene derivative α-PVT and an opioid receptor agonist AH-7921 identified in illegal products. Forensic Toxicol 31:223–240

    Article  CAS  Google Scholar 

  25. Uchiyama N, Shimokawa Y, Kawamura M, Kikura-Hanajiri R, Hakamatsuka T (2014) Chemical analysis of a benzofuran derivative, 2-(2-ethylaminopropyl)benzofuran (2-EAPB), eight synthetic cannabinoids, five cathinone derivatives, and five other designer drugs newly detected in illegal products. Forensic Toxicol 32:266–281

    Article  CAS  Google Scholar 

  26. Shevyrin V, Morzherin Y, Melkozerov V, Nevero A (2014) New synthetic cannabinoid – methyl 2-{[1-(5-fluoropentyl)-3-methyl-1H-indol-3-ylcarbonyl]amino}butyrate – as a designer drug. Chem Heterocycl Compd 50(4):583–586

    Article  CAS  Google Scholar 

  27. Hasegawa K, Wurita A, Minakata K, Gonmori K, Yamagishi I, Nozawa H, Watanabe K, Suzuki O (2015) Identification and quantitation of 5-fluoro-ADB, one of the most dangerous synthetic cannabinoids, in the stomach contents and solid tissues of a human cadaver and in some herbal products. Forensic Toxicol 33:112–121

    Article  CAS  Google Scholar 

  28. Explanatory note to the project of Regulation of the Government of Russian Federation ‘About Changes in Some Acts of the Government of Russian Federation Connected with Improvement of Control of Turnover of Narcotic Drugs’ (in Russian) (2014) http://regulation.gov.ru/get.php?view_id=12&doc_id=55037. Accessed 21 Dec 2014

  29. Bulygina I (2014) Clinical presentations of intoxication by new psychoactive compound MDMB(N)-Bz-F. Thesis of The II Scientific and Practical Seminar ‘Methodical, Organizational and Law Problems of Chemical and Toxicological Laboratories of Narcological Services’, Moscow, October 21–22, 2014 (in Russian) www.narkotiki.ru/objects/narkotiki02/1414709242.ppt. Accessed 21 Dec 2014

  30. Arntson A, Ofsa B, Lancaster D, Simon JR, McMullin M, Logan B (2013) Validation of novel immunoassay for the detection of synthetic cannabinoids and metabolites in urine specimens. J Anal Toxicol 37:284–290

    Article  CAS  Google Scholar 

  31. Kronstrand R, Brinkhagen L, Birath-Karlsson C, Roman M, Josefsson M (2014) LC-QTOF-MS as a superior strategy to immunoassay for the comprehensive analysis of synthetic cannabinoids in urine. Anal Bioanal Chem 406:3599–3609

    Article  CAS  Google Scholar 

  32. Lebedev AT (2013) Environmental mass spectrometry. Annu Rev Anal Chem 6:163–189

    Article  CAS  Google Scholar 

  33. Stoliarov BV, Savinov IM, Vitenberg AG, Kartsova LA, Zenkevich IG, Kalmanovsky VI, Kalambet YA (2002) Practical gas and liquid chromatography. St. Petersburg University, St. Petersburg (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert T. Lebedev.

Additional information

Published in the topical collection High-Resolution Mass Spectrometry in Food and Environmental Analysis with guest editor Aldo Laganà.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3.24 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevyrin, V., Melkozerov, V., Nevero, A. et al. Identification and analytical characteristics of synthetic cannabinoids with an indazole-3-carboxamide structure bearing a N-1-methoxycarbonylalkyl group. Anal Bioanal Chem 407, 6301–6315 (2015). https://doi.org/10.1007/s00216-015-8612-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8612-7

Keywords

Navigation