Skip to main content
Log in

Three-dimensional ultrasound imaging and its use in quantifying organ and pathology volumes

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Although ultrasonography is an important cost-effective imaging modality, technical improvements are needed before its full potential is realized for accurate and reproducible monitoring of disease progression or regression. Two-dimensional viewing of three-dimensional anatomy, using conventional ultrasonography, limits our ability to quantify and visualize pathology and is partly responsible for the reported variability in diagnosis and monitoring of disease progression. Efforts of investigators have focused on overcoming these deficiencies by developing 3D ultrasound imaging techniques that are capable of acquiring B-mode images using existing conventional ultrasound systems, reconstructing the information into 3D images, and then allowing interactive viewing of the 3D images on inexpensive desktop computers. In addition, the availability of 3D ultrasound images has allowed the development of manual and semi-automated techniques to quantify normal and abnormal anatomical volumes. In this paper we review our semi-automated 3D segmentation approaches for segmenting the surface of the carotid arteries and plaques, and segmenting the prostate. These techniques demonstrate that efficient segmentation techniques can be used with 3D ultrasound images to quantify anatomical organ volumes and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Fenster A, Downey DB, Cardinal HN (2001) Phys Med Biol 46:R67–99

    Article  CAS  PubMed  Google Scholar 

  2. Fenster A, Downey D (2000) Three-dimensional ultrasound imaging. In: Beutel J, Kundel H, Van Metter R (eds) Handbook of medical imaging, vol 1, physics and psychophysics. SPIE Press, Bellingham, WA, pp 433–509

  3. Smith WL, Fenster A (2000) Ultrasound Med Biol 26:551–562

    Article  CAS  PubMed  Google Scholar 

  4. Cardinal HN, Gill JD, Fenster A (2000) IEEE Trans Med Imaging 19:632–651

    Article  CAS  PubMed  Google Scholar 

  5. Downey DB, Fenster A (1995) Am J Roentgenol 165:665–668

    CAS  Google Scholar 

  6. Fenster A, Tong S, Sherebrin S, Downey DB, Rankin RN (1995) SPIE Phys Med Imaging 2432:176–184

    Google Scholar 

  7. Picot PA, Rickey DW, Mitchell R, Rankin RN, Fenster A (1991) SPIE Proc Image Capture Formatting Display 1444:206–213

    Google Scholar 

  8. Pretorius DH, Nelson TR, Jaffe JS (1992) J Ultrasound Med 11:225–232

    CAS  PubMed  Google Scholar 

  9. Guo Z, Fenster A (1996) Ultrasound Med Biol 22:1059–1069

    Article  CAS  PubMed  Google Scholar 

  10. Tong S, Downey DB, Cardinal HN, Fenster A (1996) Ultrasound Med Biol 22:735–746

    Article  CAS  PubMed  Google Scholar 

  11. Elliot TL, Downey DB, Tong S, McLean CA, Fenster A (1996) Acad Radiol 3:401–406

    CAS  PubMed  Google Scholar 

  12. Chin JL, Downey DB, Mulligan M, Fenster A (1998) J Urol 159:910–914

    CAS  PubMed  Google Scholar 

  13. Hughes SW, D'Arcy TJ, Maxwell DJ, Chiu W, Milner A, Saunders JE, Sheppard RJ (1996) Ultrasound Med Biol 22:561–572

    Article  CAS  PubMed  Google Scholar 

  14. Leotta DF, Detmer PR, Martin RW (1997) Ultrasound Med Biol 23:597–609

    Article  CAS  PubMed  Google Scholar 

  15. Gilja OH, Hausken T, Olafsson S, Matre K, Odegaard S (1998) Ultrasound Med Biol 24:1161–1167

    Article  CAS  PubMed  Google Scholar 

  16. Bonilla-Musoles F, Raga F, Osborne NG, Blanes J (1995) J Ultrasound Med 14:757–765

    CAS  PubMed  Google Scholar 

  17. Ganapathy U, Kaufman A (1992) Proc SPIE 1808:535–545

    Google Scholar 

  18. Levoy M (1990) IEEE Comput Graph Appl 10:33–40

    Article  Google Scholar 

  19. Sivan E, Chan L, Uerpairojkit B, Chu GP, Reece EA (1997) J Ultrasound Med 16:401–405

    CAS  PubMed  Google Scholar 

  20. Nadkarni SK, Boughner DR, Drangova M, Fenster A (2000) Phys Med Biol 45:1255–1273

    Article  CAS  PubMed  Google Scholar 

  21. Terris MK, Stamey TA (1991) J Urol 145:984–987

    CAS  PubMed  Google Scholar 

  22. Tong S, Cardinal HN, McLoughlin RF, Downey DB, Fenster A (1998) Ultrasound Med Biol 24:673–681

    Article  CAS  PubMed  Google Scholar 

  23. Mitchell JR, Karlik SJ, Lee DH, Eliasziw M, Rice GP, Fenster A (1996) Med Phys 23:85–97

    Article  CAS  PubMed  Google Scholar 

  24. Ladak HM, Mao F, Wang Y, Downey DB, Steinman DA, Fenster A (2000) Med Phys 27:1777–1788

    Article  CAS  PubMed  Google Scholar 

  25. Gill JD, Ladak HM, Steinman DA, Fenster A (2000) Med Phys 27:1333–1342

    Article  CAS  PubMed  Google Scholar 

  26. McInerney T, Terzopoulos D (1996) Med Image Anal 1:91–108

    Article  CAS  PubMed  Google Scholar 

  27. Lobregt S, Viergever MA (1995) IEEE Trans Med Imaging 14:12–24

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Canadian Institutes of Health Research and the Ontario R & D Challenge Fund. The first author holds a Canada Research Chair and acknowledges the support of the Canada Research Chair program of the Canadian Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Fenster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenster, A., Downey, D.B. Three-dimensional ultrasound imaging and its use in quantifying organ and pathology volumes. Anal Bioanal Chem 377, 982–989 (2003). https://doi.org/10.1007/s00216-003-2169-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2169-6

Keywords

Navigation