Skip to main content
Log in

Modulation of neuroplastic molecules in selected brain regions after chronic administration of the novel antidepressant agomelatine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Neuronal plasticity is associated with depression, probably as a result of modified expression of proteins important for cellular resiliency. It is therefore important to establish if and how antidepressant drugs may be able to regulate these mechanisms in order to achieve relevant clinical effects.

Objective

We investigated the effects of chronic treatment with agomelatine (an MT1/MT2 receptor agonist and 5-HT2C receptor antagonist) on the brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF-2), and activity-regulated cytoskeleton-associated protein (Arc).

Methods

Animals were treated for 21 days with agomelatine, venlafaxine, or a vehicle and sacrificed 1 h (6 p.m.) or 16 h after the last injection (9 a.m.) to evaluate the messenger RNA (mRNA) and protein expression of these neuroplastic markers in the hippocampus and prefrontal cortex.

Results

Agomelatine, but not venlafaxine, produced major transcriptional changes in the hippocampus, where significant up-regulations of BDNF and FGF-2 were observed. Both drugs up-regulated the Arc transcription levels. No effects were observed in the prefrontal cortex. Instead, the levels of BDNF protein were elevated by agomelatine in both regions: the effects of the drug on mRNA levels in the hippocampus and cortex are different, while the effects on the protein seem to have the same cumulative result, suggesting different modulatory mechanisms in the two regions.

Conclusions

Our data provide new information regarding the molecular mechanisms that contribute to the chronic effects of the new antidepressant agomelatine on brain function. The ability of agomelatine to modulate the expression of these neuroplastic molecules, which follows a circadian rhythm, may contribute to its antidepressant action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T (2007) Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res 85:525–535

    Article  PubMed  CAS  Google Scholar 

  • Audinot V, Mailliet F, Lahaye-Brasseur C, Bonnaud A, Le Gall A, Amosse C, Dromaint S, Rodriguez M, Nagel N, Galizzi JP, Malpaux B, Guillaumet G, Lesieur D, Lefoulon F, Renard P, Delagrange P, Boutin JA (2003) New selective ligands of human cloned melatonin MT1 and MT2 receptors. N Schmied Arch Pharmacol 367:553–561

    Article  CAS  Google Scholar 

  • Bachis A, Mallei A, Cruz MI, Wellstein A, Mocchetti I (2008) Chronic antidepressant treatments increase basic fibroblast growth factor and fibroblast growth factor-binding protein in neurons. Neuropharmacology 55:1114–1120

    Article  PubMed  CAS  Google Scholar 

  • Banasr M, Soumier A, Hery M, Mocaer E, Daszuta A (2006) Agomelatine, a new antidepressant, induces regional changes in hippocampal neurogenesis. Biol Psychiatry 59:1087–1096

    Article  PubMed  CAS  Google Scholar 

  • Begliuomini S, Lenzi E, Ninni F, Casarosa E, Merlini S, Pluchino N, Valentino V, Luisi S, Luisi M, Genazzani AR (2008) Plasma brain-derived neurotrophic factor daily variations in men: correlation with cortisol circadian rhythm. J Endocrinol 197:429–435

    Article  PubMed  CAS  Google Scholar 

  • Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151

    Article  PubMed  CAS  Google Scholar 

  • Bova R, Micheli MR, Qualadrucci P, Zucconi GG (1998) BDNF and trkB mRNAs oscillate in rat brain during the light-dark cycle. Brain Res Mol Brain Res 57:321–324

    Article  PubMed  CAS  Google Scholar 

  • Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Dreshfield-Ahmad LJ, Threlkeld PG, Shaw JL, Thompson L, Nelson DL, Hemrick-Luecke SK, Wong DT (2001) Comparative affinity of duloxetine and venlafaxine for serotonin and norepinephrine transporters in vitro and in vivo, human serotonin receptor subtypes, and other neuronal receptors. Neuropsychopharmacology 25:871–880

    Article  PubMed  CAS  Google Scholar 

  • Calabrese F, Molteni R, Maj PF, Cattaneo A, Gennarelli M, Racagni G, Riva MA (2007) Chronic duloxetine treatment induces specific changes in the expression of BDNF transcripts and in the subcellular localization of the neurotrophin protein. Neuropsychopharmacology 32:2351–2359

    Article  PubMed  CAS  Google Scholar 

  • Calabrese F, Molteni R, Racagni G, Riva MA (2009) Neuronal plasticity: a link between stress and mood disorders. Psychoneuroendocrinology

  • Castren E (2005) Is mood chemistry? Nat Rev Neurosci 6:241–246

    Article  PubMed  CAS  Google Scholar 

  • Cooke JD, Grover LM, Spangler PR (2009) Venlafaxine treatment stimulates expression of brain-derived neurotrophic factor protein in frontal cortex and inhibits long-term potentiation in hippocampus. Neuroscience 162:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Dekeyne A, Mannoury la Cour C, Gobert A, Brocco M, Lejeune F, Serres F, Sharp T, Daszuta A, Soumier A, Papp M, Rivet JM, Flik G, Cremers TI, Muller O, Lavielle G, Millan MJ (2008) S32006, a novel 5-HT2C receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models. Psychopharmacol Berl 199:549–568

    Article  CAS  Google Scholar 

  • Frodl T, Meisenzahl EM, Zetzsche T, Born C, Groll C, Jager M, Leinsinger G, Bottlender R, Hahn K, Moller HJ (2002) Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 159:1112–1118

    Article  PubMed  Google Scholar 

  • Groves JO (2007) Is it time to reassess the BDNF hypothesis of depression? Mol Psychiatry 12:1079–1088

    Article  PubMed  CAS  Google Scholar 

  • Imbesi M, Uz T, Dzitoyeva S, Manev H (2008) Stimulatory effects of a melatonin receptor agonist, ramelteon, on BDNF in mouse cerebellar granule cells. Neurosci Lett 439:34–36

    Article  PubMed  CAS  Google Scholar 

  • Jacobshagen S, Kessler B, Rinehart CA (2008) At least four distinct circadian regulatory mechanisms are required for all phases of rhythms in mRNA amount. J Biol Rhythms 23:511–524

    Article  PubMed  CAS  Google Scholar 

  • Kozisek ME, Middlemas D, Bylund DB (2008) Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol Ther 117:30–51

    Article  PubMed  CAS  Google Scholar 

  • Larsen MH, Mikkelsen JD, Hay-Schmidt A, Sandi C (2010) Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment. J Psychiatr Res 44:808–816

    Article  PubMed  Google Scholar 

  • Liang FQ, Walline R, Earnest DJ (1998) Circadian rhythm of brain-derived neurotrophic factor in the rat suprachiasmatic nucleus. Neurosci Lett 242:89–92

    Article  PubMed  CAS  Google Scholar 

  • Macqueen G, Frodl T (2010) The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry

  • Maragnoli ME, Fumagalli F, Gennarelli M, Racagni G, Riva MA (2004) Fluoxetine and olanzapine have synergistic effects in the modulation of fibroblast growth factor 2 expression within the rat brain. Biol Psychiatry 55:1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Gobert A, Lejeune F, Dekeyne A, Newman-Tancredi A, Pasteau V, Rivet JM, Cussac D (2003) The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther 306:954–964

    Article  PubMed  CAS  Google Scholar 

  • Molteni R, Calabrese F, Mancini M, Racagni G, Riva MA (2008) Basal and stress-induced modulation of activity-regulated cytoskeletal associated protein (Arc) in the rat brain following duloxetine treatment. Psychopharmacol Berl 201:285–292

    Article  CAS  Google Scholar 

  • Molteni R, Calabrese F, Cattaneo A, Mancini M, Gennarelli M, Racagni G, Riva MA (2009) Acute stress responsiveness of the neurotrophin BDNF in the rat hippocampus is modulated by chronic treatment with the antidepressant duloxetine. Neuropsychopharmacology 34:1523–1532

    Article  PubMed  CAS  Google Scholar 

  • Molteni R, Calabrese F, Pisoni S, Gabriel C, Mocaer E, Racagni G, Riva MA (2010) Synergistic mechanisms in the modulation of the neurotrophin BDNF in the rat prefrontal cortex following acute agomelatine administration. World J Biol Psychiatry 11:148–153

    Article  PubMed  Google Scholar 

  • Pandi-Perumal SR, Srinivasan V, Cardinali DP, Monti MJ (2006) Could agomelatine be the ideal antidepressant? Expert Rev Neurother 6:1595–1608

    Article  PubMed  CAS  Google Scholar 

  • Papp M, Gruca P, Boyer PA, Mocaer E (2003) Effect of agomelatine in the chronic mild stress model of depression in the rat. Neuropsychopharmacology 28:694–703

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1996) The rat brain in stereotaxis coordinates. Academic Press, New York

    Google Scholar 

  • Pollock GS, Vernon E, Forbes ME, Yan Q, Ma YT, Hsieh T, Robichon R, Frost DO, Johnson JE (2001) Effects of early visual experience and diurnal rhythms on BDNF mRNA and protein levels in the visual system, hippocampus, and cerebellum. J Neurosci 21:3923–3931

    PubMed  CAS  Google Scholar 

  • Riva MA, Molteni R, Bedogni F, Racagni G, Fumagalli F (2005) Emerging role of the FGF system in psychiatric disorders. Trends Pharmacol Sci 26:228–231

    Article  PubMed  CAS  Google Scholar 

  • Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160:1516–1518

    Article  PubMed  Google Scholar 

  • Soumier A, Banasr M, Lortet S, Masmejean F, Bernard N, Kerkerian-Le-Goff L, Gabriel C, Millan MJ, Mocaer E, Daszuta A (2009) Mechanisms contributing to the phase-dependent regulation of neurogenesis by the novel antidepressant, agomelatine, in the adult rat hippocampus. Neuropsychopharmacology 34:2390–2403

    Article  PubMed  CAS  Google Scholar 

  • Turner CA, Akil H, Watson SJ, Evans SJ (2006) The fibroblast growth factor system and mood disorders. Biol Psychiatry 59:1128–1135

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Dr J Richetto for contributing to part of this study.

Conflict of interest statement

C.G. and E.M. are employed by Servier. The authors F.C., R.M., G.R. and M.A.R. have no biomedical financial interests or potential conflicts of interest to declare.

This research has been supported by a grant from SERVIER to G.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Riva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calabrese, F., Molteni, R., Gabriel, C. et al. Modulation of neuroplastic molecules in selected brain regions after chronic administration of the novel antidepressant agomelatine. Psychopharmacology 215, 267–275 (2011). https://doi.org/10.1007/s00213-010-2129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2129-8

Keywords

Navigation