Skip to main content

Advertisement

Log in

MEK inhibition suppresses the development of lung fibrosis in the bleomycin model

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The extracellular signal-regulated kinase (ERK) cascade has long been known to be central to the activation of cellular processes such as proliferation, differentiation, and oncogenic transformation. The mitogen-activated protein (MAP) serine/threonine family of protein kinases, of which ERK is a member, is activated by a mechanism that includes protein kinase cascades. Mitogen-activated protein kinases (MAPKs) are well-conserved enzymes connecting cell surface receptors to intracellular regulatory targets; they are activated in response to a wide variety of stimuli. The aim of this study was to investigate the effects of PD98059, a highly selective inhibitor of MAP/ERK kinase1 (MEK1) activation, on the development of lung inflammation and fibrosis. Lung injury was induced by intratracheal instillation of bleomycin (1 mg/kg), and PD98059 (10 mg/kg, 10% dimethyl sulfoxide, i.p.) was administrated 1 h after bleomycin instillation and daily for 7 days. PD98059 treatment shows therapeutic effects on pulmonary damage, decreasing many inflammatory and apoptotic parameters, such as (1) cytokine production; (2) IkBα degradation and NF-kB nuclear translocation; (3) iNOS expression; (4) nitrotyrosine and PAR localization; and (5) the degree of apoptosis, as evaluated by Bax and Bcl-2 balance, FAS ligand expression, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. In particular, to assess whether PD98059 treatment influences MAPKs pathway, we have also investigated the expression of activated ERK and JNK after bleomycin-induced pulmonary fibrosis, showing that the inhibition of the cascade reduces the inflammatory processes that lead to the appearance of the fibrosis. Taken together, all our results clearly show that PD98059 reduces the lung injury and inflammation due to the intratracheal bleomycin administration in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abmayr SM, Yao T, Parmely T, Workman JL (2006) Preparation of nuclear and cytoplasmic extracts from mammalian cells. Curr Protoc Mol Biol Chapter 12:Unit 12.1

  • Adach K, Suzuki M, Sugimoto T, Suzuki S, Niki R, Oyama A, Uetsuka K, Nakamaya H, Doi K (2002) Granulocyte colony-stimulating factor exacerbates the acute lung injury and pulmonary fibrosis induced by intratracheal administration of bleomycin in rats. Exp Toxicol Pathol 53:501–510

    Article  PubMed  Google Scholar 

  • Ali S, Mann DA (2004) Signal transduction via the NF-kappaB pathway: a targeted treatment modality for infection, inflammation and repair. Cell Biochem Funct 22:67–79

    Article  PubMed  CAS  Google Scholar 

  • Al-Shanti N, Stewart CE (2008) PD98059 enhances C2 myoblast differentiation through p38 MAPK activation: a novel role for PD98059. J Endocrinol 198:243–252

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft T, Simpson JM, Timbrell V (1988) Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol 41:467–470

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836–844

    Article  PubMed  CAS  Google Scholar 

  • Blenis J (1993) Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci USA 90:5889–5892

    Article  PubMed  CAS  Google Scholar 

  • Chatham WW, Swaim R, Frohsin H Jr, Heck LW, Miller EJ, Blackburn WD Jr (1993) Degradation of human articular cartilage by neutrophils in synovial fluid. Arthritis Rheum 36:51–58

    Article  PubMed  CAS  Google Scholar 

  • Cobb MH, Goldsmith EJ (1995) How MAP kinases are regulated. J Biol Chem 270:14843–14846

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Genovese T, Failla M, Vecchio G, Fruciano M, Mazzon E, Di Paola R, Muia C, La Rosa C, Crimi N, Rizzarelli E, Vancheri C (2007) Protective effect of orally administered carnosine on bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 292:L1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    Article  PubMed  CAS  Google Scholar 

  • Davis RJ (1993) The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268:14553–14556

    PubMed  CAS  Google Scholar 

  • Di Paola R, Galuppo M, Mazzon E, Paterniti I, Bramanti P, Cuzzocrea S (2010) PD98059, a specific MAP kinase inhibitor, attenuates multiple organ dysfunction syndrome/failure (MODS) induced by zymosan in mice. Pharmacol Res 61:175–187

    Article  PubMed  Google Scholar 

  • Di Paola R, Crisafulli C, Mazzon E, Genovese T, Paterniti I, Bramanti P, Cuzzocrea S (2009) Effect of PD98059, a selective MAPK3/MAPK1 inhibitor, on acute lung injury in mice. Int J Immunopathol Pharmacol 22:937–950

    PubMed  Google Scholar 

  • Douglas WW, Ryu JH, Bjoraker JA, Schroeder DR, Myers JL, Tazelaar HD, Swensen SJ, Scanlon PD, Peters SG, DeRemee RA (1997) Colchicine versus prednisone as treatment of usual interstitial pneumonia. Mayo Clin Proc 72:201–209

    Article  PubMed  CAS  Google Scholar 

  • Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92:7686–7689

    Article  PubMed  CAS  Google Scholar 

  • Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397

    Article  PubMed  CAS  Google Scholar 

  • Everson MP, Chandler DB (1992) Changes in distribution, morphology, and tumor necrosis factor-alpha secretion of alveolar macrophage subpopulations during the development of bleomycin-induced pulmonary fibrosis. Am J Pathol 140:503–512

    PubMed  CAS  Google Scholar 

  • Genovese T, Mazzon E, Di Paola R, Muia C, Threadgill MD, Caputi AP, Thiemermann C, Cuzzocrea S (2005) Inhibitors of poly(ADP-ribose) polymerase modulate signal transduction pathways and the development of bleomycin-induced lung injury. J Pharmacol Exp Ther 313:529–538

    Article  PubMed  CAS  Google Scholar 

  • Green FH (2002) Overview of pulmonary fibrosis. Chest 122:334S–339S

    Article  PubMed  Google Scholar 

  • Hubbard AK, Timblin CR, Shukla A, Rincon M, Mossman BT (2002) Activation of NF-kappaB-dependent gene expression by silica in lungs of luciferase reporter mice. Am J Physiol Lung Cell Mol Physiol 282:L968–975

    PubMed  CAS  Google Scholar 

  • Johnson MA, Kwan S, Snell NJ, Nunn AJ, Darbyshire JH, Turner-Warwick M (1989) Randomised controlled trial comparing prednisolone alone with cyclophosphamide and low dose prednisolone in combination in cryptogenic fibrosing alveolitis. Thorax 44:280–288

    Article  PubMed  CAS  Google Scholar 

  • Kasper M, Barth K (2009) Bleomycin and its role in inducing apoptosis and senescence in lung cells—modulating effects of caveolin-1. Curr Cancer Drug Targets 9:341–353

    Article  PubMed  CAS  Google Scholar 

  • Krammer PH (2000) CD95's deadly mission in the immune system. Nature 407:789–795

    Article  PubMed  CAS  Google Scholar 

  • Latsi PI, du Bois RM, Nicholson AG, Colby TV, Bisirtzoglou D, Nikolakopoulou A, Veeraraghavan S, Hansell DM, Wells AU (2003) Fibrotic idiopathic interstitial pneumonia: the prognostic value of longitudinal functional trends. Am J Respir Crit Care Med 168:531–537

    Article  PubMed  Google Scholar 

  • Lee PJ, Zhang X, Shan P, Ma B, Lee CG, Homer RJ, Zhu Z, Rincon M, Mossman BT, Elias JA (2006) ERK1/2 mitogen-activated protein kinase selectively mediates IL-13-induced lung inflammation and remodeling in vivo. J Clin Invest 116:163–173

    Article  PubMed  CAS  Google Scholar 

  • Li LF, Liao SK, Huang CC, Hung MJ, Quinn DA (2008) Serine/threonine kinase-protein kinase B and extracellular signal-regulated kinase regulate ventilator-induced pulmonary fibrosis after bleomycin-induced acute lung injury: a prospective, controlled animal experiment. Crit Care 12:R103

    Article  PubMed  Google Scholar 

  • Liu K, Chi DS, Li C, Hall HK, Milhorn DM, Krishnaswamy G (2005) HIV-1 Tat protein-induced VCAM-1 expression in human pulmonary artery endothelial cells and its signaling. Am J Physiol Lung Cell Mol Physiol 289:L252–260

    Article  PubMed  CAS  Google Scholar 

  • Mapel DW, Samet JM, Coultas DB (1996) Corticosteroids and the treatment of idiopathic pulmonary fibrosis. Past, present, and future. Chest 110:1058–1067

    Article  PubMed  CAS  Google Scholar 

  • Negi G, Kumar A, Sharma SS (2010) Concurrent targeting of nitrosative stress-PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy. Biochem Biophys Res Commun 391:102–106

    Article  PubMed  CAS  Google Scholar 

  • Ozaki T, Hayashi H, Tani K, Ogushi F, Yasuoka S, Ogura T (1992) Neutrophil chemotactic factors in the respiratory tract of patients with chronic airway diseases or idiopathic pulmonary fibrosis. Am Rev Respir Dis 145:85–91

    PubMed  CAS  Google Scholar 

  • Ponticos M, Holmes AM, Shi-wen X, Leoni P, Khan K, Rajkumar VS, Hoyles RK, Bou-Gharios G, Black CM, Denton CP, Abraham DJ, Leask A, Lindahl GE (2009) Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum 60:2142–2155

    Article  PubMed  CAS  Google Scholar 

  • Raghu G, Depaso WJ, Cain K, Hammar SP, Wetzel CE, Dreis DF, Hutchinson J, Pardee NE, Winterbauer RH (1991) Azathioprine combined with prednisone in the treatment of idiopathic pulmonary fibrosis: a prospective double-blind, randomized, placebo-controlled clinical trial. Am Rev Respir Dis 144:291–296

    PubMed  CAS  Google Scholar 

  • Selman M, King TE, Pardo A (2001) Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 134:136–151

    PubMed  CAS  Google Scholar 

  • Siegel PM, Hardy WR, Muller WJ (2000) Mammary gland neoplasia: insights from transgenic mouse models. BioEssays 22:554–563

    Article  PubMed  CAS  Google Scholar 

  • ATS/ERS (2000) Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med 161:646–664

    Google Scholar 

  • Sullivan DE, Ferris M, Pociask D, Brody AR (2005) Tumor necrosis factor-alpha induces transforming growth factor-beta1 expression in lung fibroblasts through the extracellular signal-regulated kinase pathway. Am J Respir Cell Mol Biol 32:342–349

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki J, Tagaya E, Kawatani K, Nakata J, Endo Y, Nagai A (2004) Airway mucosal thickening and bronchial hyperresponsiveness induced by inhaled beta 2-agonist in mice. Chest 126:205–212

    Article  PubMed  CAS  Google Scholar 

  • Teixeira KC, Soares FS, Rocha LG, Silveira PC, Silva LA, Valenca SS, Dal Pizzol F, Streck EL, Pinho RA (2008) Attenuation of bleomycin-induced lung injury and oxidative stress by N-acetylcysteine plus deferoxamine. Pulm Pharmacol Ther 21:309–316

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Nakagawa T, Shimizu S (2006) Mitochondrial membrane permeability transition and cell death. Biochim Biophys Acta 1757:1297–1300

    Article  PubMed  CAS  Google Scholar 

  • Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296:1635–1636

    Article  PubMed  CAS  Google Scholar 

  • Wang XM, Zhang Y, Kim HP, Zhou Z, Feghali-Bostwick CA, Liu F, Ifedigbo E, Xu X, Oury TD, Kaminski N, Choi AM (2006) Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med 203:2895–2906

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Khoo S, Dang A, Witt S, Do V, Zhen E, Schaefer EM, Cobb MH (1997) Differential regulation of mitogen-activated protein/ERK kinase (MEK)1 and MEK2 and activation by a Ras-independent mechanism. Mol Endocrinol 11:1618–1625

    Article  PubMed  CAS  Google Scholar 

  • Xu SW, Howat SL, Renzoni EA, Holmes A, Pearson JD, Dashwood MR, Bou-Gharios G, Denton CP, du Bois RM, Black CM, Leask A, Abraham DJ (2004) Endothelin-1 induces expression of matrix-associated genes in lung fibroblasts through MEK/ERK. J Biol Chem 279:23098–23103

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Kuwano K, Hagimoto N, Watanabe K, Matsuba T, Fujita M, Inoshima I, Hara N (2002) MAP kinase activation and apoptosis in lung tissues from patients with idiopathic pulmonary fibrosis. J Pathol 198:388–396

    Article  PubMed  CAS  Google Scholar 

  • Zingarelli B, O'Connor M, Wong H, Salzman AL, Szabo C (1996) Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J Immunol 156:350–358

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from IRCCS Centro Neurolesi “Bonino-Pulejo.” We thank Tiziana Genovese and Carmelo La Spada for their excellent technical assistance during this study, Mrs. Caterina Cutrona for secretarial assistance, and Miss Valentina Malvagni for editorial assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Cuzzocrea.

Additional information

Maria Galuppo and Emanuela Esposito contributed equally to the present results and share the first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galuppo, M., Esposito, E., Mazzon, E. et al. MEK inhibition suppresses the development of lung fibrosis in the bleomycin model. Naunyn-Schmiedeberg's Arch Pharmacol 384, 21–37 (2011). https://doi.org/10.1007/s00210-011-0637-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0637-7

Keywords

Navigation