Skip to main content
Log in

CB1- and CB2-cannabinoid receptor-independent lipolysis induced by WIN 55,212-2 in male rat adipocytes

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The expression of genes encoding the cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase (FAAH) and the lipolytic activity of cannabinoid agonists were investigated in rat adipose tissue.

RT-PCR studies indicated that the genes encoding CB1 and CB2 receptors and FAAH are not expressed in epididymal adipocytes. In functional studies, the non-selective cannabinoid receptor agonist WIN 55,212-2 concentration-dependently (0.01–30 µM) induced glycerol release above baseline (E max 96.1±6.2% of isoprenaline-induced lipolytic response). The selective CB2 agonist JWH-015 (0.01–30 µM) had no lipolytic activity while the endocannabinoid 2-arachidonoylglycerol and the stable anandamide derivative, R(+)-methanandamide had, only a weak lipolytic effect at the highest concentrations employed (10 and 30 µM). The concentration/response relationship for WIN 55,212-2-mediated lipolytic activity, mimicked by the S(−)-enantiomer WIN 55,212-3, was shifted significantly to the right by the CB1 antagonist AM 251 only at 10 µM, but was not modified by the β-adrenoceptor antagonist propranolol (1 µM). The protein kinase inhibitor H-89, but not the two adenylyl cyclase inhibitors (±)N 6-R-phenylisopropyladenosine (R-PIA, 1 µM, a selective A1 adenosine receptor agonist) or SQ 22,536 (50 µM) significantly reduced the glycerol efflux induced by WIN 55,212-2.

Our data suggest that the cannabinoid drug WIN 55,212-2 may exert lipolytic activity in male rat adipocytes via an intracellular mechanism, not activated by CB1 or CB2 receptor stimulation, significantly reversed by H-89 but not clearly linked to stimulation of adenylyl cyclase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ameri A, Simmet T (2000) Effects of 2-arachidonylglycerol, an endogenous cannabinoid, on neuronal activity in rat hippocampal slices. Naunyn-Schmiedeberg’s Arch Pharmacol 361:256–272

    Google Scholar 

  • Breivogel C, Griffin G, Di Marzo V, Martin B (2001) Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol Pharmacol 60:155–163

    CAS  PubMed  Google Scholar 

  • Chatzipanteli K, Rudolph S, Axelrod L (1992) Coordinate control of lipolysis by prostaglandin E2 and prostacyclin in rat adipose tissue. Diabetes 41:927–935

    CAS  PubMed  Google Scholar 

  • Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P (2001) Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J 20:7033–7040

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  • Coruzzi G, Adami M, Coppelli G, Frati P, Soldani G (1999) Inhibitory effect of the cannabinoid receptor agonist WIN 55,212-2 on pentagastrin-induced gastric acid secretion in the anaesthetized rat. Naunyn-Schmiedeberg’s Arch Pharmacol 360:715–718

    Google Scholar 

  • Croci T, Manara L, Aureggi G, Guagnini F, Rinaldi-Carmona M, Maffrand J, Le Fur G, Mukenge S, Ferla G (1998) In vitro functional evidence of neuronal cannabinoid CB1 receptors in human ileum. Br J Pharmacol 125:1393–1395

    CAS  PubMed  Google Scholar 

  • Cushman S (1970) Structure-function relationships in the adipose cell. Ultrastructure of the isolated adipose cell. J Cell Biol 46:326–341

    CAS  PubMed  Google Scholar 

  • Das S, Paria B, Chakraborty I, Dey S (1995) Cannabinoid ligand-receptor signaling in the mouse uterus. Proc Natl Acad Sci USA 92:4332–4336

    CAS  PubMed  Google Scholar 

  • Di Marzo V (1998) ‘Endocannabinoids’ and other fatty acid derivatives with cannabimimetic properties: biochemistry and possible physiopathological relevance. Biochim Biophys Acta 1392:153–175

    PubMed  Google Scholar 

  • Di Marzo V (1999) Biosynthesis and inactivation of endocannabinoids: relevance to their proposed role as neuromodulators. Life Sci 65:645–655

    Article  PubMed  Google Scholar 

  • Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz J, Piomelli D (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372:686–691

    PubMed  Google Scholar 

  • Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T, Kunos G (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825

    PubMed  Google Scholar 

  • Egertova M, Giang D, Cravatt B, Elphick M (1998) A new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proc R Soc Lond B Biol Sci 265:2081–2085

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann B, Murray R, Kotlikoff M (1994) Voltage window for sustained elevation of cytosolic calcium in smooth muscle cells. Proc Natl Acad Sci USA 91:11914–11918

    CAS  PubMed  Google Scholar 

  • Frühbeck G, Gòmez-Ambrosi J (2001) Modulation of the leptin-induced white adipose tissue lipolysis by nitric oxide. Cell Signal 13:827–833

    Article  PubMed  Google Scholar 

  • Garcia-Barrado M, Sancho C, Iglesias-Osma M, Moratinos J (2001) Effects of verapamil and elgodipine on isoprenaline-induced metabolic responses in rabbits. Eur J Pharmacol 415:105–115

    Article  CAS  PubMed  Google Scholar 

  • Gebremedhin D, Lange A, Campbell W, Hillard C, Harder D (1999) Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Physiol 276:H2085–H2093

    CAS  PubMed  Google Scholar 

  • Girouard H, Savard R (1998) The lack of bimodality in the effects of endogenous and exogenous prostaglandins on fat cell lipolysis in rats. Prostaglandins Other Lipid Mediat 56:43–45

    Article  CAS  PubMed  Google Scholar 

  • Giuffrida A, Beltramo M, Piomelli D (2001) Mechanisms of endocannabinoid inactivation: biochemistry and pharmacology. J Pharmacol Exp Ther 298:7–14

    CAS  PubMed  Google Scholar 

  • Gowri M, Reaven G, Azhar S (1999) Effect of masoprocol on glucose transport and lipolysis by isolated rat adipocytes. Metabolism 48:411–414

    CAS  PubMed  Google Scholar 

  • Guzman M, Sanchez C (1999) Effects of cannabinoids on energy metabolism. Life Sci 65:657–664

    PubMed  Google Scholar 

  • Hàjos N, Freund TF (2002) Pharmacological separation of cannabinoid sensitive receptors on hippocampal excitatory and inhibitory fibers. Neuropharmacology 43:503–510

    Article  PubMed  Google Scholar 

  • Hàjos N, Katona I, Naiem SS, MacKie K, Ledent C, Mody I, Freund TF (2001) Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci 12:3239–3249

    Article  Google Scholar 

  • Haslam RJ, Davidson MM, Desjardins JV (1978) Inhibition of adenylate cyclase by adenosine analogues in preparations of broken and intact human platelets. Evidence for the unidirectional control of platelet function by cyclic AMP. Biochem J 176:83–95

    CAS  PubMed  Google Scholar 

  • Holland M, John Challiss R, Standen N, Boyle J (1999) Cannabinoid CB1 receptors fail to cause relaxation, but couple via Gi/Go to the inhibition of adenylyl cyclase in carotid artery smooth muscle. Br J Pharmacol 128:597–604

    CAS  PubMed  Google Scholar 

  • Holm C, Osterlund T, Laurell H, Contreras J (2000) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 20:365–393

    Article  CAS  PubMed  Google Scholar 

  • Howlett AC, Mukhopadhyay S (2000) Cellular signal transduction by anandamide and 2-arachidonoylglycerol. Chem Phys Lipids 108:53–70

    Article  CAS  PubMed  Google Scholar 

  • Izzo AA, Mascolo N, Capasso R, Germano MP, De Pasquale R, Capasso F (1999) Inhibitory effect of cannabinoid agonists on gastric emptying in the rat. Naunyn-Schmiedeberg’s Arch Pharmacol 360:221–223

    Google Scholar 

  • Kathmann M, Weber B, Schlicker E (2001) Cannabinoid CB1 receptor-mediated inhibition of acetylcholine release in the brain of NMRI, CD-1 and C57BL/6J mice. Naunyn- Schmiedeberg’s Arch Pharmacol 363:50–56

    Google Scholar 

  • Kreuz D, Axelrod J (1973) Δ9-Tetrahydrocannabinol: localization in body fat. Science 179:391–393

    CAS  PubMed  Google Scholar 

  • Kunos G, Jàrai Z, Bàtkai S, Goparaju SK, Ishac EJN, Liu J, Wang L, Wagner JA (2000) Endocannabinoids as cardiovascular modulators. Chem Phys Lipids 108:159–168

    Article  CAS  PubMed  Google Scholar 

  • Lan R, Liu Q, Fan P, Lin S, Fernando SR, McCallion D, Pertwee R, Makriyannis A (1999) Structure-activity relationships of pyrazole derivatives as cannabinoid receptor antagonists. J Med Chem 42:769–76

    Article  CAS  PubMed  Google Scholar 

  • Liang HX, Belardinelli L, Ozeck MJ, Shryock JC (2002) Tonic activity of the rat adipocyte A1-adenosine receptor. Br J Pharmacol 135:1457–1466

    CAS  PubMed  Google Scholar 

  • Maccarrone M, Fiorucci L, Erba F, Bari M, Finazzi-Agro A, Ascoli F (2000) Human mast cells take up and hydrolyze anandamide under the control of 5-lipoxygenase and do not express cannabinoid receptors. FEBS Lett 468:176–180

    CAS  PubMed  Google Scholar 

  • Maier R, Maitre L (1975) Steroidogenic and lipolytic effects of cannabinols in the rat and the rabbit. Biochem Pharmacol 24:1695–1699

    Article  CAS  PubMed  Google Scholar 

  • Malinowska B, Kwolek G, Gothert M (2001) Anandamide and methanandamide induce both vanilloid VR1- and cannabinoid CB1 receptor-mediated changes in heart rate and blood pressure in anaesthetized rats. Naunyn-Schmiedeberg’s Arch Pharmacol 364:562–569

    Google Scholar 

  • Mater M, Thelen A, Jump D (1999) Arachidonic acid and PGE2 regulation of hepatic lipogenic gene expression. J Lipid Res 40:1045–1052

    CAS  PubMed  Google Scholar 

  • Matsuda L, Lolait S, Brownstein M, Young A, Bonner T (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    CAS  PubMed  Google Scholar 

  • Munro S, Thomas K, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    CAS  PubMed  Google Scholar 

  • Nakazi M, Bauer U, Nickel T, Kathmann M, Schlicker E (2000) Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB1 receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 361:19–24

    Google Scholar 

  • Niederhoffer N, Szabo B (1999) Effect of the cannabinoid receptor agonist WIN55212-2 on sympathetic cardiovascular regulation. Br J Pharmacol 126:457–466

    CAS  PubMed  Google Scholar 

  • Nogueron M, Porgilsson B, Schneider W, Stucky C, Hillard C (2001) Cannabinoid receptor agonists inhibit depolarization-induced calcium influx in cerebellar granule neurons. J Neurochem 79:371–381

    Article  CAS  PubMed  Google Scholar 

  • Pertwee R (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 6:635–664

    PubMed  Google Scholar 

  • Pertwee R, Fernando S (1996) Evidence for the presence of cannabinoid CB1 receptors in mouse urinary bladder. Br J Pharmacol 118:2053–2058

    CAS  PubMed  Google Scholar 

  • Piomelli D, Giuffrida A, Calignano A, Rodriguez de Fonseca F (2000) The endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol Sci 21:218–224

    CAS  PubMed  Google Scholar 

  • Ramirez-Ponce M, Acosta J, Bellido J (1990) Electrical activity in white adipose tissue of rat. Rev Esp Fisiol 46:133–138

    CAS  PubMed  Google Scholar 

  • Rawitch A, Rohrer R, Vardaris R (1979) Δ9-Tetrahydrocannabinol uptake by adipose tissue: preferential accumulation in gonadal fat organs. Gen Pharmacol 10:525–529

    Article  CAS  PubMed  Google Scholar 

  • Rice W, Shannon J, Burton F, Fiedeldey D (1997) Expression of a brain-type cannabinoid receptor (CB1) in alveolar Type II cells in the lung: regulation by hydrocortisone. Eur J Pharmacol 327:227–232

    Article  CAS  PubMed  Google Scholar 

  • Rodbell M (1964) Metabolism of isolated fat cells. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    CAS  Google Scholar 

  • Sanchez C, Velasco G, Guzman M (1997) Δ9-Tetrahydrocannabinol stimulates glucose utilization in C6 glioma cells. Brain Res 767:64–71

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Galve-Roperh I, Rueda D, Guzman M (1998) Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Δ9-tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes. Mol Pharmacol 54:834–843

    PubMed  Google Scholar 

  • Schatz AR, Lee M, Condie RB, Pulaski JT, Kaminski NE (1997) Cannabinoid receptors CB1 and CB2: a characterization of expression and adenylate cyclase modulation within the immune system. Toxicol Appl Pharmacol 142:278–287

    Article  CAS  PubMed  Google Scholar 

  • Schulte G, Fredholm BB (2002) Diverse inhibitors of intracellular signalling act as adenosine receptor antagonists. Cell Signal 14:109–113

    Article  CAS  PubMed  Google Scholar 

  • Strosberg AD (1997) Structure and function of the beta 3-adrenergic receptor. Annu Rev Pharmacol Toxicol 37:421–50

    Article  CAS  PubMed  Google Scholar 

  • Ueda N, Puffenbarger R, Yamamoto S, Deutsch D (2000) The fatty acid amide hydrolase (FAAH). Chem Phys Lipids 108:107–121

    Article  CAS  PubMed  Google Scholar 

  • Volkow N, Tancredi L, Grant C, Gillespie H, Valentine A, Mullani N, Wang G, Hollister L (1995) Brain glucose metabolism in violent psychiatric patients: a preliminary study. Psychiatry Res 61:243–253

    Article  CAS  PubMed  Google Scholar 

  • Wallmichrath I, Szabo B (2002) Analysis of the effect of cannabinoids on GABAergic neurotransmission in the substantia nigra pars reticulata. Naunyn-Schmiedeberg’s Arch Pharmacol 365:326–334

    Google Scholar 

  • Wieland O (1957) Eine enzymatische Methode zur Bestimmung von Glycerin. Biochem Z 329:313–319

    CAS  PubMed  Google Scholar 

  • Willinsky M, Webster C, Herring B (1974) Effects of Δ1-tetrahydrocannabinol on Sidman discriminated avoidance behavior in rats. Act Nerv Super (Praha) 16:34–38

    Google Scholar 

  • Xue B, Greenberg A, Kraemer F, Zemel M (2001) Mechanism of intracellular calcium ([Ca2+]i) inhibition of lipolysis in human adipocytes. FASEB J 15:2527–2529

    CAS  PubMed  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Nieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieri, P., Greco, R., Adinolfi, B. et al. CB1- and CB2-cannabinoid receptor-independent lipolysis induced by WIN 55,212-2 in male rat adipocytes. Naunyn-Schmiedeberg's Arch Pharmacol 368, 352–359 (2003). https://doi.org/10.1007/s00210-003-0831-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-003-0831-3

Keywords

Navigation