Skip to main content

Advertisement

Log in

In vivo murine hepatic microRNA and mRNA expression signatures predicting the (non-)genotoxic carcinogenic potential of chemicals

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

There is a high need to improve the assessment of, especially non-genotoxic, carcinogenic features of chemicals. We therefore explored a toxicogenomics-based approach using genome-wide microRNA and mRNA expression profiles upon short-term exposure in mice. For this, wild-type mice were exposed for seven days to three different classes of chemicals, i.e., four genotoxic carcinogens (GTXC), seven non-genotoxic carcinogens (NGTXC), and five toxic non-carcinogens. Hepatic expression patterns of mRNA and microRNA transcripts were determined after exposure and used to assess the discriminative power of the in vivo transcriptome for GTXC and NGTXC. A final classifier set, discriminative for GTXC and NGTXC, was generated from the transcriptomic data using a tiered approach. This appeared to be a valid approach, since the predictive power of the final classifier set in three different classifier algorithms was very high for the original training set of chemicals. Subsequent validation in an additional set of chemicals revealed that the predictive power for GTXC remained high, in contrast to NGTXC, which appeared to be more troublesome. Our study demonstrated that the in vivo microRNA-ome has less discriminative power to correctly identify (non-)genotoxic carcinogen classes. The results generally indicate that single mRNA transcripts do have the potential to be applied in risk assessment, but that additional (genomic) strategies are necessary to correctly predict the non-genotoxic carcinogenic potential of a chemical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bender K, Gottlicher M, Whiteside S, Rahmsdorf HJ, Herrlich P (1998) Sequential DNA damage-independent and -dependent activation of NF-kappaB by UV. EMBO J 17(17):5170–5181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing series b (methodological). J Roy Stat Soc 57(1):289–300

    Google Scholar 

  • Chen T (2010) The role of MicroRNA in chemical carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 28(2):89–124

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Su IJ, Leu YW, Young KC, Sun HS (2012) Expression of T-cell lymphoma invasion and metastasis 2 (TIAM2) promotes proliferation and invasion of liver cancer. Int J Cancer 130(6):1302–1313

    Article  CAS  PubMed  Google Scholar 

  • Coma S, Amin DN, Shimizu A, Lasorella A, Iavarone A, Klagsbrun M (2010) Id2 promotes tumor cell migration and invasion through transcriptional repression of semaphorin 3F. Cancer Res 70(9):3823–3832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Concepcion CP, Han YC, Mu P, Bonetti C, Yao E, D’Andrea A, Vidigal JA, Maughan WP, Ogrodowski P, Ventura A (2012) Intact p53-dependent responses in miR-34-deficient mice. PLoS Genet 8(7):e1002797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Leeuw WC, Rauwerda H, Jonker MJ, Breit TM (2008) Salvaging affymetrix probes after probe-level re-annotation. BMC Res Notes 166

  • de Vries A, van Oostrom CT, Dortant PM, Beems RB, van Kreijl CF, Capel PJ, van Steeg H (1997) Spontaneous liver tumors and benzo[a]pyrene-induced lymphomas in XPA-deficient mice. Mol Carcinog 19(1):46–53

    Article  PubMed  Google Scholar 

  • Elamin BK, Callegari E, Gramantieri L, Sabbioni S, Negrini M (2011) MicroRNA response to environmental mutagens in liver. Mutat Res 717(1–2):67–76

    Article  CAS  PubMed  Google Scholar 

  • Ellinger-Ziegelbauer H, Gmuender H, Bandenburg A, Ahr HJ (2008) Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutat Res 637(1–2):23–39

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Salguero PM, Hilbert DM, Rudikoff S, Ward JM, Gonzalez FJ (1996) Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol Appl Pharmacol 140(1):173–179

    Article  CAS  PubMed  Google Scholar 

  • Fielden MR, Brennan R, Gollub J (2007) A gene expression biomarker provides early prediction and mechanistic assessment of hepatic tumor induction by nongenotoxic chemicals. Toxicol Sci 99(1):90–100

    Article  CAS  PubMed  Google Scholar 

  • Fielden MR, Nie A, McMillian M, Elangbam CS, Trela BA, Yang Y, Dunn RT, Dragan Y, Fransson-Stehen R, Bogdanffy M et al (2008) Interlaboratory evaluation of genomic signatures for predicting carcinogenicity in the rat. Toxicol Sci 103(1):28–34

    Article  CAS  PubMed  Google Scholar 

  • Fielden MR, Adai A, Dunn RT, Olaharski A, Searfoss G, Sina J, Aubrecht J, Boitier E, Nioi P, Auerbach S et al (2011) Development and evaluation of a genomic signature for the prediction and mechanistic assessment of nongenotoxic hepatocarcinogens in the rat. Toxicol Sci 124(1):54–74

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Pang L, Ren C, Ma T (2012) Decreased expression of Nedd4L correlates with poor prognosis in gastric cancer patient. Med Oncol 29(3):1733–1738

    Article  CAS  PubMed  Google Scholar 

  • Guyton KZ, Kyle AD, Aubrecht J, Cogliano VJ, Eastmond DA, Jackson M, Keshava N, Sandy MS, Sonawane B, Zhang L et al (2009) Improving prediction of chemical carcinogenicity by considering multiple mechanisms and applying toxicogenomic approaches. Mutat Res 681(2–3):230–240

    Article  CAS  PubMed  Google Scholar 

  • He L, He X, Lim LP, De SE, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Heneghan HM, Miller N, Kerin MJ (2010) MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol 10(5):543–550

    Article  CAS  PubMed  Google Scholar 

  • Hernandez LG, van Steeg H, Luijten M, van Benthem J (2009) Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach. Mutat Res 682(2–3):94–109

    Article  CAS  PubMed  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264

    Article  PubMed  Google Scholar 

  • Jain AK, Barton MC (2012) Unmet expectations: miR-34 plays no role in p53-mediated tumor suppression in vivo. PLoS Genet 8(7):e1002859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jonker MJ, Bruning O, van Iterson M, Schaap MM, van der Hoeven TV, Vrieling H, Beems RB, de Vries A, van Steeg H, Breit TM et al (2009) Finding transcriptomics biomarkers for in vivo identification of (non-)genotoxic carcinogens using wild-type and Xpa/p53 mutant mouse models. Carcinogenesis 30(10):1805–1812

    Article  CAS  PubMed  Google Scholar 

  • Jonker MJ, Melis JP, Kuiper RV, van der Hoeven TV, Wackers PF, Robinson J, van der Horst GT, Dolle ME, Vijg J, Breit TM et al (2013) Life spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs. Aging Cell 12(5):901–909

    Article  CAS  PubMed  Google Scholar 

  • Kasinski AL, Slack FJ (2011) Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 11(12):849–864

    Article  CAS  PubMed  Google Scholar 

  • Kinzler V (2002) The genetic basis of human cancer, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Lasorella A, Rothschild G, Yokota Y, Russell RG, Iavarone A (2005) Id2 mediates tumor initiation, proliferation, and angiogenesis in Rb mutant mice. Mol Cell Biol 25(9):3563–3574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lilienblum W, Dekant W, Foth H, Gebel T, Hengstler JG, Kahl R, Kramer PJ, Schweinfurth H, Wollin KM (2008) Alternative methods to safety studies in experimental animals: role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH). Arch Toxicol 82(4):211–236

    Article  CAS  PubMed  Google Scholar 

  • Luijten M, Muller JJA, Hernandez LG, van der Ven LTM, & van Benthem J (2012) Prediction of carcinogenic potential of substances using repeated dose toxicity data (Rep. No. 340700006/2012)

  • Malik AI, Williams A, Lemieux CL, White PA, Yauk CL (2012) Hepatic mRNA, microRNA, and miR-34a-target responses in mice after 28 days exposure to doses of benzo(a)pyrene that elicit DNA damage and mutation. Environ Mol Mutagen 53(1):10–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manuppello J, Willett C (2008) Longer rodent bioassay fails to address 2-year bioassay’s flaws. Environ Health Perspect 116(12):A516–A517

    Article  PubMed Central  PubMed  Google Scholar 

  • Melis JP, Kuiper RV, Zwart E, Robinson J, Pennings JL, van Oostrom CT, Luijten M, Van SH (2013a) Slow accumulation of mutations in Xpc(-/-) mice upon induction of oxidative stress. DNA Repair (Amst) 12(12):1081–1086

    Article  CAS  Google Scholar 

  • Melis JP, Speksnijder EN, Kuiper RV, Salvatori DC, Schaap MM, Maas S, Robinson J, Verhoef A, Van BJ, Luijten M et al (2013b) Detection of genotoxic and non-genotoxic carcinogens in Xpc(-/-)p53(±) mice. Toxicol Appl Pharmacol 266(2):289–297

    Article  CAS  PubMed  Google Scholar 

  • Morrison BH, Bauer JA, Lupica JA, Tang Z, Schmidt H, DiDonato JA, Lindner DJ (2007) Effect of inositol hexakisphosphate kinase 2 on transforming growth factor beta-activated kinase 1 and NF-kappaB activation. J Biol Chem 282(21):15349–15356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nie AY, McMillian M, Parker JB, Leone A, Bryant S, Yieh L, Bittner A, Nelson J, Carmen A, Wan J et al (2006) Predictive toxicogenomics approaches reveal underlying molecular mechanisms of nongenotoxic carcinogenicity. Mol Carcinog 45(12):914–933

    Article  CAS  PubMed  Google Scholar 

  • Palta A, Dhiman P, Cruz SD (2012) ZBTB16-RARalpha variant of acute promyelocytic leukemia with tuberculosis: a case report and review of literature. Korean J Hematol 47(3):229–232

    Article  PubMed Central  PubMed  Google Scholar 

  • Park JY, Shigenaga MK, Ames BN (1996) Induction of cytochrome P4501A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin or indolo(3,2-b)carbazole is associated with oxidative DNA damage. Proc Natl Acad Sci USA 93(6):2322–2327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pothof J, Verkaik NS, Van IJcken W, Wiemer EA, Ta VT, Van der Horst GT, Jaspers NG, Van Gent DC, Hoeijmakers JH, Persengiev SP (2009) MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J 28(14):2090-2099

    Google Scholar 

  • Ramirez-Herrick AM, Mullican SE, Sheehan AM, Conneely OM (2011) Reduced NR4A gene dosage leads to mixed myelodysplastic/myeloproliferative neoplasms in mice. Blood 117(9):2681–2690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rickman DS, Pflueger D, Moss B, VanDoren VE, Chen CX, de la Taille A, Kuefer R, Tewari AK, Setlur SR, Demichelis F et al (2009) SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res 69(7):2734–2738

    Article  CAS  PubMed  Google Scholar 

  • Silva LB, Van der Laan JW (2000) Mechanisms of nongenotoxic carcinogenesis and assessment of the human hazard. Regul Toxicol Pharmacol 32(2):135–143

    Article  Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R (ed) Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas RS, Bao W, Chu TM, Bessarabova M, Nikolskaya T, Nikolsky Y, Andersen ME, Wolfinger RD (2009) Use of short-term transcriptional profiles to assess the long-term cancer-related safety of environmental and industrial chemicals. Toxicol Sci 112(2):311–321

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Minowa Y, Morikawa Y, Kondo C, Maruyama T, Kato I, Nakatsu N, Igarashi Y, Ono A, Hayashi H et al (2011) Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database. Toxicol Appl Pharmacol 255(3):297–306

    Article  CAS  PubMed  Google Scholar 

  • VanKreijl CF, McAnulty PA, Beems RB, Vynckier A, van Steeg H, Fransson-Steen R, Alden CL, Forster R, Vander Laan JW, Vandenberghe J (2001) Xpa and Xpa/p53 ± knockout mice: overview of available data. Toxicol Pathol 29:117–127

    Article  CAS  Google Scholar 

  • Waters MD, Jackson M, Lea I (2010) Characterizing and predicting carcinogenicity and mode of action using conventional and toxicogenomics methods. Mutat Res 705(3):184–200

    Article  CAS  PubMed  Google Scholar 

  • Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules RS (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8(6):625–637

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu C, Peng H, Zhang J, Feng Q (2012) IL1 receptor antagonist gene IL1-RN variable number of tandem repeats polymorphism and cancer risk: a literature review and meta-analysis. PLoS ONE 7(9):e46017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou MI, Foy RL, Chitalia VC, Zhao J, Panchenko MV, Wang H, Cohen HT (2005) Jade-1, a candidate renal tumor suppressor that promotes apoptosis. Proc Natl Acad Sci USA 102(31):11035–11040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Animal Facilities of the National Institute for Public Health and the Environment for their skillful (bio-)technical support. We thank Novartis Pharma AG for providing cyclosporine A. The work presented here was in part financially supported by the Netherlands Genomics Initiative, Netherlands Organization for Scientific Research (NWO) Grant Number 050-060-510, and the Dutch Technology Foundation (STW) Grant Number STW-LGC.06935.

Conflict of interest

The authors declare there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjam Luijten.

Additional information

Joost P. M. Melis and Kasper W. J. Derks have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melis, J.P.M., Derks, K.W.J., Pronk, T.E. et al. In vivo murine hepatic microRNA and mRNA expression signatures predicting the (non-)genotoxic carcinogenic potential of chemicals. Arch Toxicol 88, 1023–1034 (2014). https://doi.org/10.1007/s00204-013-1189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1189-z

Keywords

Navigation