Skip to main content
Log in

Mechanisms of the ifosfamide-induced inhibition of endocytosis in the rat proximal kidney tubule

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The Fanconi syndrome is a common side effect of the chemotherapeutic agent ifosfamide. Current evidences suggest that chloroacetaldehyde (CAA), one of the main metabolites of ifosfamide activation, contributes to its nephrotoxicity. However, the pathophysiology of CAA-induced Fanconi syndrome is not fully understood. The present work examined the adverse effects of CAA on precision-cut rat renal cortical slices, which allowed studying the toxic effect of CAA on proximal endocytosis. We demonstrated that clinically relevant concentrations of CAA (≤200 μM) are able to inhibit the uptake of horseradish peroxidase, a marker of proximal tubular cell endocytosis in renal tubular proximal cells. CAA ≥75 μM has adverse effects, both on viability parameters and on energy metabolism, as shown by the great decrease in total glutathione and ATP levels. In addition, the V-ATPase, which plays a crucial role in intracellular vesicle trafficking, was inhibited by 100 μM of CAA. By contrast, the slight decrease in Na–K–ATPase activity observed for CAA≥ 125 μM (maximum inhibition: 33%) could not totally explain the inhibition of the reabsorption processes. In conclusion, the addition of the two main adverse effects of CAA (decrease in ATP levels and inhibition of the V-ATPase) could explain the inhibition of endocytosis and the Fanconi syndrome observed during ifosfamide treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aleksa K, Ito S, Koren G (2004) Renal-tubule metabolism of ifosfamide to the nephrotoxic chloroacetaldehyde: pharmacokinetic modeling for estimation of intracellular levels. J Lab Clin Med 143:159–162

    Article  PubMed  CAS  Google Scholar 

  • Benesic A, Schwerdt G, Freudinger R, Mildenberger S, Groezinger F, Wollny B, Kirchhoff A, Gekle M (2006) Chloroacetaldehyde as a Sulfhydryl reagent: the role of critical thiol groups in ifosfamide nephropathy. Kidney Blood Press Res 29:280–293

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Hirsch S, Gluck S (1988) Localization of a proton-pumping ATPase in rat kidney. J Clin Invest 82:2114–2126

    Article  PubMed  CAS  Google Scholar 

  • Brown D (1989) Membrane recycling and epithelial cell function. Am J Physiol 256:F1–F12

    PubMed  CAS  Google Scholar 

  • Carli M, Passone E, Perilongo G, Bisogno G (2003) Ifosfamide in pediatric solid tumors. Oncology 65(Suppl 2):99–104

    Article  PubMed  CAS  Google Scholar 

  • Caron HN, Abeling N, van Gennip A, de Kraker J, Voute PA (1992) Hyperaminoaciduria identifies patients at risk of developing renal tubular toxicity associated with ifosfamide and platinate containing regimens. Med Pediatr Oncol 20:42–47

    Article  PubMed  CAS  Google Scholar 

  • Cerny T, Küpfer A (1989) Stabilization and quantitative determination of the neurotoxic metabolite chloroacetaldehyde in the plasma of ifosfamide treated patients. In: Proceedings of the 5th European Conference on Clinical Oncology, London, p 147

  • Christensen EI, Devuyst O, Dom G, Nielsen R, Van der Smissen P, Verroust P, Leruth M, Guggino WB, Courtoy PJ (2003) Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci USA 100:8472–8477

    Article  PubMed  CAS  Google Scholar 

  • Clague MJ, Urbe S, Aniento F, Gruenberg J (1994) Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J Biol Chem 269:21–24

    PubMed  CAS  Google Scholar 

  • Clarke BL, Weigel PH (1985) Recycling of the asialoglycoprotein receptor in isolated rat hepatocytes. ATP depletion blocks receptor recycling but not a single round of endocytosis. J Biol Chem 260:128–133

    PubMed  CAS  Google Scholar 

  • Desbuquois B, Janicot M, Dupuis A (1990) Degradation of insulin in isolated liver endosomes is functionally linked to ATP-dependent endosomal acidification. Eur J Biochem 193:501–512

    Article  PubMed  CAS  Google Scholar 

  • Devuyst O, Jouret F, Auzanneau C, Courtoy PJ (2005) Chloride channels and endocytosis: new insights from Dent’s disease and ClC-5 knockout mice. Nephron Physiol 99:p69–p73

    Article  PubMed  CAS  Google Scholar 

  • Dschida WJ, Bowman BJ (1995) The vacuolar ATPase: sulfite stabilization and the mechanism of nitrate inactivation. J Biol Chem 270:1557–1563

    Article  PubMed  CAS  Google Scholar 

  • Dubourg L, Michoudet C, Cochat P, Baverel G (2001) Human kidney tubules detoxify chloroacetaldehyde, a presumed nephrotoxic metabolite of ifosfamide. J Am Soc Nephrol 12:1615–1623

    PubMed  CAS  Google Scholar 

  • Feng Y, Forgac M (1994) Inhibition of vacuolar H(+)-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A. J Biol Chem 269:13224–13230

    PubMed  CAS  Google Scholar 

  • Fisher SE, Black GC, Lloyd SE, Hatchwell E, Wrong O, Thakker RV, Raig IW (1994) Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent’s disease (an X-linked hereditary nephrolithiasis). Hum Mol Genet 3:2053–2059

    PubMed  CAS  Google Scholar 

  • Fisher SE, van Bakel I, Lloyd SE, Pearce SH, Thakker RV, Craig IW (1995) Cloning and characterization of CLCN5, the human kidney chloride channel gene implicated in Dent disease (an X-linked hereditary nephrolithiasis). Genomics 29:598–606

    Article  PubMed  CAS  Google Scholar 

  • Forgac M (1999) The vacuolar H+-ATPase of clathrin-coated vesicles is reversibly inhibited by S-nitrosoglutathione. J Biol Chem 274:1301–1305

    Article  PubMed  CAS  Google Scholar 

  • Foxall PJ, Singer JM, Hartley JM, Neild GH, Lapsley M, Nicholson JK, Souhami RL (1997) Urinary proton magnetic resonance studies of early ifosfamide-induced nephrotoxicity and encephalopathy. Clin Cancer Res 3:1507–1518

    PubMed  CAS  Google Scholar 

  • Gekle M, Mildenberger S, Freudinger R, Silbernagl S (1995) Endosomal alkalinization reduces Jmax and Km of albumin receptor-mediated endocytosis in OK cells. Am J Physiol 268:F899–F906

    PubMed  CAS  Google Scholar 

  • Griffith OW (1985) Glutathione and glutathione disulphide. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 8. VCH Verlagsgesellschaft, Weinheim, pp 521–529

    Google Scholar 

  • Herak-Kramberger CM, Brown D, Sabolic I (1998) Cadmium inhibits vacuolar H(+)-ATPase and endocytosis in rat kidney cortex. Kidney Int 53:1713–1726

    Article  PubMed  CAS  Google Scholar 

  • Ho PT, Zimmerman K, Wexler LH, Blaney S, Jarosinski P, Weaver-McClure L, Izraeli S, Balis FM (1995) A prospective evaluation of ifosfamide-related nephrotoxicity in children and young adults. Cancer 76:2557–2564

    Article  PubMed  CAS  Google Scholar 

  • Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    PubMed  CAS  Google Scholar 

  • Jurgens H, Treuner J, Winkler K, Gobel U (1989) Ifosfamide in pediatric malignancies. Semin Oncol 16:46–50

    PubMed  CAS  Google Scholar 

  • Kaijser GP, Beijnen JH, Bult A, Underberg WJ (1994) Ifosfamide metabolism and pharmacokinetics (review). Anticancer Res 14:517–531

    PubMed  CAS  Google Scholar 

  • Katz AI, Epstein FH (1967) The role of sodium-potassium-activated adenosine triphosphatase in the reabsorption of sodium by the kidney. J Clin Invest 46:1999–2011

    PubMed  CAS  Google Scholar 

  • Lamprecht W, Trautschold I (1974) Adenosine-5’-triphosphate determination with Hexokinase and glucose-6-phosphate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 4. Academic Press, New York, pp 2101–2110

    Google Scholar 

  • Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV (1996) A common molecular basis for three inherited kidney stone diseases. Nature 379:445–449

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Manabe T, Yoshimori T, Henomatsu N, Tashiro Y (1993) Inhibitors of vacuolar-type H(+)-ATPase suppresses proliferation of cultured cells. J Cell Physiol 157:445–452

    Article  PubMed  CAS  Google Scholar 

  • Marshansky V, Ausiello DA, Brown D (2002) Physiological importance of endosomal acidification: potential role in proximal tubulopathies. Curr Opin Nephrol Hypertens 11:527–537

    Article  PubMed  Google Scholar 

  • Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700

    Article  PubMed  CAS  Google Scholar 

  • Mohrmann M, Pauli A, Ritzer M, Schonfeld B, Seifert B, Brandis M (1992) Inhibition of sodium-dependent transport systems in LLC-PK1 cells by metabolites of ifosfamide. Ren Physiol Biochem 15:289–301

    PubMed  CAS  Google Scholar 

  • Mohrmann M, Pauli A, Walkenhorst H, Schonfeld B, Brandis M (1993) Effect of ifosfamide metabolites on sodium-dependent phosphate transport in a model of proximal tubular cells (LLC-PK1) in culture. Ren Physiol Biochem 16:285–298

    PubMed  CAS  Google Scholar 

  • Mohrmann M, Kupper N, Schonfield B, Brandis M (1995) Ifosfamide and mesna: effects on the Na/H exchanger activity in renal epithelial cells in culture (LLC-PK1). Ren Physiol Biochem 18:118–127

    PubMed  CAS  Google Scholar 

  • Nissim I, Horyn O, Daikhin Y, Luhovyy B, Phillips PC, Yudkoff M (2006) Ifosfamide-induced nephrotoxicity: mechanism and prevention. Cancer Res 66:7824–7831

    Article  PubMed  CAS  Google Scholar 

  • Palokangas H, Metsikko K, Vaananen K (1994) Active vacuolar H+ATPase is required for both endocytic and exocytic processes during viral infection of BHK-21 cells. J Biol Chem 269:17577–17585

    PubMed  CAS  Google Scholar 

  • Pendyala L, Creaven PJ, Schwartz G, Meropol NJ, Bolanowska-Higdon W, Zdanowicz J, Murphy M, Perez R (2000) Intravenous ifosfamide/mesna is associated with depletion of plasma thiols without depletion of leukocyte glutathione. Clin Cancer Res 6:1314–1321

    PubMed  CAS  Google Scholar 

  • Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ (2000) ClC-5 Cl- -channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–373

    Article  PubMed  CAS  Google Scholar 

  • Pütter J, Becker R (1983) Peroxidases. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 3. Verlug Chemie, Deerfiels Beach, pp 286–293

  • Sheikh MI, Moller JV (1987) Preparation and use of renal and intestinal plasma membrane vesicles for toxicological studies. In: Snell K, Mullock B (ed) Biochemical toxicology. IRL Press, Oxford, Washington, DC, pp 153–182

    Google Scholar 

  • Simonnet H, Gauthier C, Gire V, Baverel G (1994) Protein endocytosis by a kidney tubule suspension: metabolic requirements. Biochim Biophys Acta 1189:152–162

    Article  PubMed  CAS  Google Scholar 

  • Skinner R, Sharkey IM, Pearson AD, Craft AW (1993) Ifosfamide, mesna, and nephrotoxicity in children. J Clin Oncol 11:173–190

    PubMed  CAS  Google Scholar 

  • Skinner R, Cotterill SJ, Stevens MC (2000) Risk factors for nephrotoxicity after ifosfamide treatment in children: a UKCCSG late effects group study. United Kingdom Children’s Cancer Study Group. Br J Cancer 82:1636–1645

    Article  PubMed  CAS  Google Scholar 

  • Springate JE (1997) Ifosfamide metabolite chloroacetaldehyde causes renal dysfunction in vivo. J Appl Toxicol 17:75–79

    Article  PubMed  CAS  Google Scholar 

  • Springate J, Taub M (2007) Ifosfamide toxicity in cultured proximal renal tubule cells. Pediatr Nephrol 22:358–365

    Article  PubMed  Google Scholar 

  • Steinmeyer K, Schwappach B, Bens M, Vandewalle A, Jentsch TJ (1995) Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J Biol Chem 270:31172–31177

    Article  PubMed  CAS  Google Scholar 

  • Takano M, Nakanishi N, Kitahara Y, Sasaki Y, Murakami T, Nagai J (2002) Cisplatin-induced inhibition of receptor-mediated endocytosis of protein in the kidney. Kidney Int 62:1707–1717

    Article  PubMed  CAS  Google Scholar 

  • Tojo A, Guzman NJ, Garg LC, Tisher CC, Madsen KM (1994) Nitric oxide inhibits bafilomycin-sensitive H(+)-ATPase activity in rat cortical collecting duct. Am J Physiol 267:F509–F515

    PubMed  CAS  Google Scholar 

  • Turrini F, Sabolic I, Zimolo Z, Moewes B, Burckhardt G (1989) Relation of ATPases in rat renal brush-border membranes to ATP-driven H+ secretion. J Membr Biol 107:1–12

    Article  PubMed  CAS  Google Scholar 

  • Vittorelli A, Gauthier C, Michoudet C, Martin G, Baverel G (2005) Characteristics of glutamine metabolism in human precision-cut kidney slices: a 13C-NMR study. Biochem J 387:825–834

    Article  PubMed  CAS  Google Scholar 

  • Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+-ATPase. Physiol Rev 84:1263–1314

    Article  PubMed  CAS  Google Scholar 

  • Wall DA, Maack T (1985) Endocytic uptake, transport, and catabolism of proteins by epithelial cells. Am J Physiol 248:C12–C20

    PubMed  CAS  Google Scholar 

  • Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9:2937–2945

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Dubourg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaseen, Z., Michoudet, C., Baverel, G. et al. Mechanisms of the ifosfamide-induced inhibition of endocytosis in the rat proximal kidney tubule. Arch Toxicol 82, 607–614 (2008). https://doi.org/10.1007/s00204-007-0275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-007-0275-5

Keywords

Navigation