Skip to main content
Log in

Severe bone microarchitecture deterioration in a family with hereditary neuropathy: evidence of the key role of the mechanostat

  • Case Report
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In this report, we present three cases of individuals from the same family with a diagnosis of CMT with severe tibia bone microarchitecture deterioration assessed by HR-pQCT. Charcot-Marie-Tooth disease (CMT) or hereditary neuropathy involves both motor and sensory nerves. Falls are often the first manifestation in these patients and represent an important risk factor for fracture. The reduction of mechanical input on bone inhibits bone formation by osteoblasts and accelerates bone resorption by osteoclasts, leading to disuse osteoporosis. We report three cases of individuals from the same family with a diagnosis of CMT with severe tibia bone microarchitecture deterioration assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT). This affectation was exclusive to the tibia; the radius remained undamaged, showing the consequences of the lack of mobility and mechanical stimulation. Physical activity and rehabilitation, in addition to adequate calcium and vitamin D supplementation, may play an essential role in the management of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Szigeti K, Lupski JR (2009) Charcot-Marie-Tooth disease. Eur J Hum Genet 17(6):703–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoyle JC, Isfort MC, Roggenbuck J, Arnold WD (2015) The genetics of Charcot-Marie-Tooth disease: current trends and future implications for diagnosis and management. Appl Clin Genet 8:235–243

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Louwerens JWK (2018) Operative treatment algorithm for foot deformities in Charcot-Marie-Tooth disease. Algorithmus für die operative Behandlung von Fußdeformitäten bei der Charcot-Marie-Tooth-Krankheit. Oper Orthop Traumatol 30(2):130–146

    Article  CAS  PubMed  Google Scholar 

  4. Timmerman V, Strickland AV, Züchner S (2014) Genetics of Charcot-Marie-Tooth (CMT) disease within the frame of the human genome project success. Genes (Basel) 5(1):13–32

    Article  CAS  Google Scholar 

  5. Pouwels S, de Boer A, Leufkens HG, Weber WE, Cooper C, de Vries F (2014) Risk of fracture in patients with Charcot-Marie-Tooth disease. Muscle Nerve 50(6):919–924

    Article  PubMed  Google Scholar 

  6. Hsu JD (1979) Extremity fractures in children with neuromuscular disease. Johns Hopkins Med J 145(3):89–93

    CAS  PubMed  Google Scholar 

  7. Aujla RS, Gulihar A, Taylor GJ (2008) Acromial stress fracture in a young wheelchair user with Charcot-Marie-Tooth disease: a case report. Cases J 1(1):359

    Article  PubMed  PubMed Central  Google Scholar 

  8. Quintart C, Baillon JM, Libotte M (1999) Fracture pathologique du tibia compliquant une maladie de Charcot-Marie-Tooth [Pathologic fracture of the tibia associated with Charcot-Marie-Tooth disease]. Acta Orthop Belg 65(1):105–108

    CAS  PubMed  Google Scholar 

  9. Garland DE, Stewart CA, Adkins RH, Hu SS, Rosen C, Liotta FJ, Weinstein DA (1992) Osteoporosis after spinal cord injury. J Orthop Res 10(3):371–378

    Article  CAS  PubMed  Google Scholar 

  10. Giannotti S, Bottai V, Dell’osso G et al (2013) Disuse osteoporosis of the upper limb: assessment of thirty patients. Clin Cases Miner Bone Metab 10(2):129–132

    PubMed  PubMed Central  Google Scholar 

  11. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8(1):455–449

    Article  CAS  PubMed  Google Scholar 

  12. MacNeil JA, Boyd SK (2008) Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 30:792–799

    Article  PubMed  Google Scholar 

  13. Nishiyama KK, Shane E (2013) Clinical imaging of bone microarchitecture with HR-pQCT. Curr Osteoporos Rep 11(2):147–155

    Article  PubMed  PubMed Central  Google Scholar 

  14. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515

    Article  CAS  PubMed  Google Scholar 

  15. Guðmundsson B, Ólafsson E, Jakobsson F, Lúðvígsson P (2010) Prevalence of symptomatic Charcot-Marie-Tooth disease in Iceland: a study of a well-defined population. Neuroepidemiology 34:13–17

    Article  Google Scholar 

  16. Palau F, Cuesta A, Pedrola L (2002) Avances en la genética molecular de las neuropatías hereditarias. Rev Neurol 35:246–253

    CAS  PubMed  Google Scholar 

  17. Boutroy S, Van Rietbergen B, Sornay-Rendu E et al (2008) Finite element analysis based on in vivo hr-pqct images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23:392–399

    Article  PubMed  Google Scholar 

  18. Burghardt AJ, Link TM, Majumdar S (2011) High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res 469:2179–2193

    Article  PubMed  PubMed Central  Google Scholar 

  19. Balonga MC, Zanchetta MB (2013) Grave deterioro de la microarquitectura ósea inducido por desuso y denervacion crónica. Actual Osteol 9(2):205–206

    Google Scholar 

  20. Keyak JH, Koyama AK, LeBlanc A, Lu Y, Lang TF (2009) Reduction in proximal femoral strength due to long-duration spaceflight. Bone. 44(3):449–453

    Article  CAS  PubMed  Google Scholar 

  21. Kannus P, Järvinen M, Sievänen H, Oja P, Vuori I (1994) Osteoporosis in men with a history of tibial fracture. J Bone Miner Res 9(3):423–429

    Article  CAS  PubMed  Google Scholar 

  22. Kazakia GJ, Tjong W, Nirody JA, Burghardt AJ, Carballido-Gamio J, Patsch JM, Link T, Feeley BT, Benjamin Ma C (2014) The influence of disuse on bone microstructure and mechanics assessed by HR-pQCT. Bone. 63:132–140

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alexandre C, Vico L (2011) Pathophysiology of bone loss in disuse osteoporosis. Joint Bone Spine 78(6):572–576

    Article  CAS  PubMed  Google Scholar 

  24. Takata S, Yasui N (2001) Disuse Osteoporosis. J Med Investig 48(3–4):147–156

    CAS  Google Scholar 

  25. Bellido T (2014) Osteocyte-driven bone remodeling. Calcif Tissue Int 94(1):25–34

    Article  CAS  PubMed  Google Scholar 

  26. Young MJ, Marshall A, Adams JE, Selby PL, Boulton AJ (1995) Osteopenia, neurological dysfunction, and the development of Charcot neuroarthropathy. Diabetes Care 18(1):34–38

    Article  CAS  PubMed  Google Scholar 

  27. Zhang K, Barragan-Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, Zhao S, Harris M, Harris SE, Feng JQ, Bonewald LF (2006) E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol 26(12):4539–4552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Winkler DG, Sutherland MK, Geoghegan JC et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22(23):6267–6276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frost HM (1997) Defining osteopenias and osteoporoses: another view (with insights from a new paradigm). Bone. 20(5):385–391

    Article  CAS  PubMed  Google Scholar 

  30. Ferretti JL, Cointry GR, Capozza RF, Frost HM (2003) Bone mass, bone strength, muscle-bone interactions, osteopenias and osteoporoses. Mech Ageing Dev 124(3):269–279

    Article  PubMed  Google Scholar 

  31. Li CY, Price C, Delisser K, Nasser P, Laudier D, Clement M, Jepsen KJ, Schaffler MB (2005) Long-term disuse osteoporosis seems less sensitive to bisphosphonate treatment than other osteoporosis. J Bone Miner Res 20(1):117–124

    Article  CAS  PubMed  Google Scholar 

  32. Milsom S, Lin S-Y(S), Cornish J, Sharma S (2016) Disuse osteoporosis: a better understanding of pathophysiology may lead to potential therapies. J Diabetol Endocrinol 1(1):1–4

    Article  Google Scholar 

  33. Kutilek S (2017) Denosumab treatment of severe disuse osteoporosis in a boy with spinal muscular atrophy. Acta Med Iran 55(10):658–660

    PubMed  Google Scholar 

  34. Daly RM, Dalla Via J, Duckham RL, Fraser SF, Helge EW (2019) Exercise for the prevention of osteoporosis in postmenopausal women: an evidence-based guide to the optimal prescription. Braz J Phys Ther 23(2):170–180

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Abdala.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdala, R., Levi, L., Longobardi, V. et al. Severe bone microarchitecture deterioration in a family with hereditary neuropathy: evidence of the key role of the mechanostat. Osteoporos Int 31, 2477–2480 (2020). https://doi.org/10.1007/s00198-020-05674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-020-05674-9

Keywords

Navigation