Skip to main content
Log in

Supplemented vs. unsupplemented human milk on bone mineralization in very low birth weight preterm infants: a randomized clinical trial

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Very low birth weight preterm newborns weighing less than 1500 g were randomized to receive human milk supplemented with FM 85® or not. They have similar bone mineral content (BMC) at baseline, but, at the end of study, BMC was increasingly higher in the FM 85® group.

Introduction

The purpose of this study is to evaluate the effectiveness of a human milk supplement (FM 85®; Nestlé, Vevey, Switzerland) developed for the purpose of improving nutrition, including bone mineralization, in very low birth weight preterm newborns.

Methods

Preterm infants weighing less than 1500 g at birth admitted to the neonatal intensive care unit of a university hospital were studied. During hospitalization, they were fed at least 50 % of human milk. Newborns with ≥20 days of age were randomly assigned to the intervention group (n = 19) to receive human milk supplemented with FM 85® or to a control group (n = 19) to receive human milk only. Anthropometric measurements, whole-body bone densitometry (DXA), and biochemical tests were performed at study entry and at the end of the study (shortly before discharge when the infant had reached 2000 g).

Results

There were no start- or end-of-study differences between the two groups, except for daily increase in length (p = 0.010). At baseline, both groups had similar BMC: 5.49 ± 3.65 vs. 4.34 ± 2.98 g (p = 0.39) for the intervention and control group, respectively. However, at the end of the study, BMC was higher in the intervention group: 10.3 ± 4.71 vs. 6.19 ± 3.23 g (p = 0.003). The mean increase in BMC during the observation period was 4.90 ± 4.46 g for the intervention group and 1.86 ± 3.17 g for the control group (p = 0.020). Serum alkaline phosphatase levels were higher in the control group (720 ± 465 vs. 391 ± 177 IU/L; p = 0.007).

Conclusions

Our data suggest that supplementation of human milk with FM 85® leads to improved bone mineralization in very low birth weight preterm newborns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Demarini S (2005) Calcium and phosphorus nutrition in preterm infants. Acta Paediatr Suppl 94(449):87–92. doi:10.1080/08035320510043619

    Article  PubMed  Google Scholar 

  2. Abrams SA, Schanler RJ, Garza C (1988) Bone mineralization in former very low birth weight infants fed either human milk or commercial formula. J Pediatr 112(6):956–960

    Article  CAS  PubMed  Google Scholar 

  3. Kuschel CA, Harding JE (2001) Calcium and phosphorus supplementation of human milk for preterm infants. Cochrane Database Syst Rev 4, CD003310. doi:10.1002/14651858.CD003310

    PubMed  Google Scholar 

  4. Giles MM, Fenton MH, Shaw B, Elton RA, Clarke M, Lang M, Hume R (1987) Sequential calcium and phosphorus balance studies in preterm infants. J Pediatr 110(4):591–598

    Article  CAS  PubMed  Google Scholar 

  5. Backstrom MC, Kuusela AL, Maki R (1996) Metabolic bone disease of prematurity. Ann Med 28(4):275–282

    Article  CAS  PubMed  Google Scholar 

  6. Rigo J, De Curtis M, Pieltain C, Picaud JC, Salle BL, Senterre J (2000) Bone mineral metabolism in the micropremie. Clin Perinatol 27(1):147–170

    Article  CAS  PubMed  Google Scholar 

  7. Rubinacci A, Moro GE, Boehm G, De Terlizzi F, Moro GL, Cadossi R (2003) Quantitative ultrasound for the assessment of osteopenia in preterm infants. Eur J Endocrinol 149(4):307–315

    Article  CAS  PubMed  Google Scholar 

  8. (1997) Breastfeeding and the use of human milk. American Academy of Pediatrics. Work Group on Breastfeeding. Pediatrics 100 (6):1035–1039

  9. Benevenuto de Oliveira MM, Thomson Z, Vannuchi MT, Matsuo T (2007) Feeding patterns of Brazilian preterm infants during the first 6 months of life, Londrina, Parana, Brazil. J Hum Lact 23(3):269–274. doi:10.1177/0890334407304235

    Article  PubMed  Google Scholar 

  10. (2012) Breastfeeding and the use of human milk. Pediatrics 129 (3):e827-841. doi:10.1542/peds.2011-3552

  11. Bishop NJ, Dahlenburg SL, Fewtrell MS, Morley R, Lucas A (1996) Early diet of preterm infants and bone mineralization at age five years. Acta Paediatr 85(2):230–236

    Article  CAS  PubMed  Google Scholar 

  12. Salle B, Senterre J, Putet G, Rigo J (1986) Effects of calcium and phosphorus supplementation on calcium retention and fat absorption in preterm infants fed pooled human milk. J Pediatr Gastroenterol Nutr 5(4):638–642

    Article  CAS  PubMed  Google Scholar 

  13. Chan GM, Lee ML, Rechtman DJ (2007) Effects of a human milk-derived human milk fortifier on the antibacterial actions of human milk. Breastfeed Med 2(4):205–208. doi:10.1089/bfm.2007.0015

    Article  PubMed  Google Scholar 

  14. Venkataraman PS, Blick KE (1988) Effect of mineral supplementation of human milk on bone mineral content and trace element metabolism. J Pediatr 113(1 Pt 2):220–224

    Article  CAS  PubMed  Google Scholar 

  15. Kuschel CA, Harding JE (2004) Multicomponent fortified human milk for promoting growth in preterm infants. Cochrane Database Syst Rev 1, CD000343. doi:10.1002/14651858.CD000343.pub2

    PubMed  Google Scholar 

  16. Barden HS, Mazess RB (1988) Bone densitometry in infants. J Pediatr 113(1 Pt 2):172–177

    Article  CAS  PubMed  Google Scholar 

  17. Braillon PM, Salle BL, Brunet J, Glorieux FH, Delmas PD, Meunier PJ (1992) Dual energy x-ray absorptiometry measurement of bone mineral content in newborns: validation of the technique. Pediatr Res 32(1):77–80. doi:10.1203/00006450-199207000-00015

    Article  CAS  PubMed  Google Scholar 

  18. Koo WW, Massom LR, Walters J (1995) Validation of accuracy and precision of dual energy X-ray absorptiometry for infants. J Bone Miner Res 10(7):1111–1115. doi:10.1002/jbmr.5650100716

    Article  CAS  PubMed  Google Scholar 

  19. Salle BL, Braillon P, Glorieux FH, Brunet J, Cavero E, Meunier PJ (1992) Lumbar bone mineral content measured by dual energy X-ray absorptiometry in newborns and infants. Acta Paediatr 81(12):953–958

    Article  CAS  PubMed  Google Scholar 

  20. Ballard JL, Khoury JC, Wedig K, Wang L, Eilers-Walsman BL, Lipp R (1991) New Ballard score, expanded to include extremely premature infants. J Pediatr 119(3):417–423

    Article  CAS  PubMed  Google Scholar 

  21. Battaglia FC, Lubchenco LO (1967) A practical classification of newborn infants by weight and gestational age. J Pediatr 71(2):159–163

    Article  CAS  PubMed  Google Scholar 

  22. Pettifor JM, Rajah R, Venter A, Moodley GP, Opperman L, Cavaleros M, Ross FP (1989) Bone mineralization and mineral homeostasis in very low-birth-weight infants fed either human milk or fortified human milk. J Pediatr Gastroenterol Nutr 8(2):217–224

    Article  CAS  PubMed  Google Scholar 

  23. Wauben IP, Atkinson SA, Shah JK, Paes B (1998) Growth and body composition of preterm infants: influence of nutrient fortification of mother’s milk in hospital and breastfeeding post-hospital discharge. Acta Paediatr 87(7):780–785

    Article  CAS  PubMed  Google Scholar 

  24. Faerk J, Petersen S, Peitersen B, Michaelsen KF (2000) Diet and bone mineral content at term in premature infants. Pediatr Res 47(1):148–156

    Article  CAS  PubMed  Google Scholar 

  25. Kovar I, Mayne P, Barltrop D (1982) Plasma alkaline phosphatase activity: a screening test for rickets in preterm neonates. Lancet 1(8267):308–310

    Article  CAS  PubMed  Google Scholar 

  26. Backstrom MC, Kouri T, Kuusela AL, Sievanen H, Koivisto AM, Ikonen RS, Maki M (2000) Bone isoenzyme of serum alkaline phosphatase and serum inorganic phosphate in metabolic bone disease of prematurity. Acta Paediatr 89(7):867–873

    Article  CAS  PubMed  Google Scholar 

  27. Lucas A, Brooke OG, Baker BA, Bishop N, Morley R (1989) High alkaline phosphatase activity and growth in preterm neonates. Arch Dis Child 64(7 Spec No):902–909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Aiken CG, Sherwood RA, Lenney W (1993) Role of plasma phosphate measurements in detecting rickets of prematurity and in monitoring treatment. Ann Clin Biochem 30(Pt 5):469–475

    Article  PubMed  Google Scholar 

  29. Faerk J, Peitersen B, Petersen S, Michaelsen KF (2002) Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate. Arch Dis Child Fetal Neonatal Ed 87(2):F133–F136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Porto BS, Fiori HH, Lago BN, Souza AA, Fiori RM (2006) Serum alkaline phosphatase and bone mineral content in preterm newborns at discharge. In: 2006 PAS Annual Meeting, 2006, San Francisco, California. Anais do Congresso, v. 1. p. 423–423

  31. Martin RJ, Fanaroff AA, Walsh MC (2010) Disorders of calcium, phosphorus, and magnesium metabolism. In: Fanaroff AA, Martin RJ (eds) Neonatal-perinatal medicine: diseases of the fetus and infant, 9th edn. Elsevier Health Science, St. Louis, pp 1523–1556

    Google Scholar 

  32. Vachharajani AJ, Mathur AM, Rao R (2009) Metabolic bone disease of prematurity. Neoreviews 10(8):e402–e411. doi:10.1542/neo.10-8-e402

    Article  Google Scholar 

  33. Atkinson SA, Tsang RC (2005) Calcium, magnesium, phosphorus, and vitamin D. In: Tsang RC, Uauy R, Kolezko B, Zlotkin SH (eds) Nutrition of the preterm infant: scientific basis and practical guidelines, 2nd edn. Digital Education Publishing Inc, Cincinnati, pp 245–276

    Google Scholar 

  34. Lago BN (2003) HM without additions, supplemented HM and formula derived from cow’s milk for preterm newborns: effects on growth and calcium-phosphorus metabolism [dissertation]. Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre

  35. Hori C, Tsukahara H, Fujii Y, Kawamitsu T, Konishi Y, Yamamoto K, Ishii Y, Sudo M (1995) Bone mineral status in preterm-born children: assessment by dual-energy X-ray absorptiometry. Biol Neonate 68(4):254–258

    Article  CAS  PubMed  Google Scholar 

  36. Horlick M, Wang J, Pierson RN Jr, Thornton JC (2004) Prediction models for evaluation of total-body bone mass with dual-energy X-ray absorptiometry among children and adolescents. Pediatrics 114(3):e337–e345. doi:10.1542/peds.2004-0301

    Article  PubMed  Google Scholar 

  37. Leonard MB, Propert KJ, Zemel BS, Stallings VA, Feldman HI (1999) Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr 135(2 Pt 1):182–188

    Article  CAS  PubMed  Google Scholar 

  38. Gordon CM, Leonard MB, Zemel BS, International Society for Clinical Densitometry (2014) 2013 Pediatric Position Development Conference: executive summary and reflections. J Clin Densitom 17(2):219–224. doi:10.1016/j.jocd.2014.01.007

    Article  PubMed  Google Scholar 

  39. Quintal VS, Diniz EM, Caparbo Vde F, Pereira RM (2014) Bone densitometry by dual-energy X-ray absorptiometry (DXA) in preterm newborns compared with full-term peers in the first six months of life. J Pediatr (Rio J) 90(6):556–562. doi:10.1016/j.jped.2014.03.001

    Article  Google Scholar 

  40. Brunton JA, Weiler HA, Atkinson AS (1997) Improvement in the accuracy of dual energy x-ray absorptiometry for whole body and regional analysis of body composition: validation using piglets and methodologic considerations in infants. Pediatr Res 41(4 Pt 1):590–596

    Article  CAS  PubMed  Google Scholar 

  41. Koo WW, Walters J, Bush AJ, Chesney RW, Carlson SE (1996) Dual-energy X-ray absorptiometry studies of bone mineral status in newborn infants. J Bone Miner Res 11(7):997–102

    Article  CAS  PubMed  Google Scholar 

  42. Brunton JA, Bayley HS, Atkinson SA (1993) Validation and application of dual-energy x-ray absorptiometry to measure bone mass and body composition in small infants. Am J Clin Nutr 58(6):839–845

    CAS  PubMed  Google Scholar 

Download references

Financial disclosure

The human milk fortifier (FM 85®) was provided by Nestlé Nutrition. Expenses with bone densitometry done at the Department of Densitometry of Hospital São Lucas were also covered by Nestlé Nutrition.

Conflicts of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. R. Garcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Einloft, P.R., Garcia, P.C.R., Piva, J.P. et al. Supplemented vs. unsupplemented human milk on bone mineralization in very low birth weight preterm infants: a randomized clinical trial. Osteoporos Int 26, 2265–2271 (2015). https://doi.org/10.1007/s00198-015-3144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3144-8

Keywords

Navigation