Skip to main content
Log in

Alteration of vitamin D metabolic enzyme expression and calcium transporter abundance in kidney involved in type 1 diabetes-induced bone loss

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study aimed to delineate the mechanism involved in type 1 diabetes-induced bone loss. The results revealed the alteration of vitamin D metabolic enzyme expression and the downregulation of renal calcium transporter abundance in type 1 diabetic mice.

Introduction

The purpose of this study was to investigate the changes of the expression of vitamin D metabolic enzymes and transcellular calcium-transporting proteins in kidneys from mice with experimentally induced diabetes.

Methods

Male DBA/2J mice were injected with either vehicle (control) or streptozotocin (STZ) daily for five consecutive days. Bone mineral density was measured by peripheral quantitative computerized tomography, and bone histomorphology was analyzed by Safranin O staining. Real-time PCR and Western blotting were applied to determine the expression of target genes and proteins.

Results

Type 1 diabetes produced high urinary calcium excretion and loss of trabecular bone measured at the proximal metaphysis of the tibia and the distal femur. Bone loss was associated with deterioration of trabecular bone microstructure. Quantified PCR results showed that mRNA expression level in the kidney of diabetic mice for 25-hydroxyvitamin D-24-hydroxylase was downregulated at week 10, while those for 25-hydroxyvitamin D-1α-hydroxylase were upregulated at week 20. In addition, mRNA expression levels for renal transient receptor potential V6, plasma membrane Ca-ATPase (PMCA)1b, and vitamin D receptor (VDR) genes were decreased in STZ-treated mice. Western blot analysis showed that protein expression of PMCA1b and VDR was significantly decreased in kidneys from STZ-treated mice compared to that of controls.

Conclusions

The limitation in this study is the lack of vitamin D, parathyroid hormone, and phosphorus levels in serum. However, the present study supports the conclusion that the underlying mechanism contributing to type 1 diabetes-associated bone loss may be alterations of vitamin D metabolic enzyme expression and associated decreases in expression of renal calcium transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tao B, Liu JM, Zhao HY, Sun LH, Wang WQ, Li XY, Ning G (2008) Differences between measurements of bone mineral densities by quantitative ultrasound and dual-energy X-ray absorptiometry in type 2 diabetic postmenopausal women. J Clin Endocrinol Metab 93:1670–1675

    Article  PubMed  CAS  Google Scholar 

  2. Schwartz AV, Sellmeyer DE (2007) Diabetes, fracture, and bone fragility. Curr Osteoporos Rep 5:105–111

    Article  PubMed  Google Scholar 

  3. Räkel A, Sheehy O, Rahme E, LeLorier J (2008) Osteoporosis among patients with type 1 and type 2 diabetes. Diab Metab 34:193–205

    Article  Google Scholar 

  4. McCabe LR (2007) Understanding the pathology and mechanisms of type I diabetic bone loss. J Cell Biochem 102:1343–1357

    Article  PubMed  CAS  Google Scholar 

  5. Martin LM, McCabe LR (2007) Type I diabetic bone phenotype is location but not gender dependent. Histochem Cell Biol 128:125–133

    Article  PubMed  CAS  Google Scholar 

  6. Hofbauer LC, Brueck CC, Singh SK, Dobnig H (2007) Osteoporosis in patients with diabetes mellitus. J Bone Miner Res 22:1317–1328

    Article  PubMed  CAS  Google Scholar 

  7. Saller A, Maggi S, Romanato G, Tonin P, Crepaldi G (2008) Diabetes and osteoporosis. Aging Clin Exp Res 20:280–289

    PubMed  Google Scholar 

  8. Nickolas TL, Leonard MB, Shane E (2008) Chronic kidney disease and bone fracture: a growing concern. Kidney Int 74:721–731

    Article  PubMed  Google Scholar 

  9. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:536–546

    Google Scholar 

  10. Altan MF, Kanter M, Donmez S, Kartal ME, Buyukbas S (2007) Combination therapy of Nigella sativa and human parathyroid hormone on bone mass, biomechanical behavior and structure in streptozotocin-induced diabetic rats. Acta Histochem 109:304–314

    Article  PubMed  CAS  Google Scholar 

  11. Ogasawara A, Nakajima A, Nakajima F, Goto K, Yamazaki M (2008) Molecular basis for affected cartilage formation and bone union in fracture healing of the streptozotocin-induced diabetic rat. Bone 43:832–839

    Article  PubMed  CAS  Google Scholar 

  12. Yamaguchi M, Uchiyama S, Lai YL (2007) Oral administration of phytocomponent p-hydroxycinnamic acid has a preventive effect on bone loss in streptozotocin-induced diabetic rats. Int J Mol Med 19:803–807

    PubMed  CAS  Google Scholar 

  13. Kanter M, Altan MF, Donmez S, Ocakci A, Kartal ME (2007) The effects of quercetin on bone minerals, biomechanical behavior, and structure in streptozotocin-induced diabetic rats. Cell Biochem Funct 25:747–752

    Article  PubMed  CAS  Google Scholar 

  14. Uchiyama S, Yamaguchi M (2005) Oral administration of beta-cryptoxanthin prevents bone loss in streptozotocin-diabetic rats in vivo. Biol Pharm Bull 28:1766–1769

    Article  PubMed  CAS  Google Scholar 

  15. Suzuki K, Miyakoshi N, Tsuchida T, Kasukawa Y, Sato K, Itoi E (2003) Effects of combined treatment of insulin and human parathyroid hormone(1–34) on cancellous bone mass and structure in streptozotocin-induced diabetic rats. Bone 33:108–114

    Article  PubMed  CAS  Google Scholar 

  16. Yamaguchi M, Uchiyama S (2003) Preventive effect of zinc acexamate administration in streptozotocin-diabetic rats: restoration of bone loss. Int J Mol Med 12:755–761

    PubMed  CAS  Google Scholar 

  17. Motyl KJ, McCabe LR (2009) Leptin treatment prevents type I diabetic marrow adiposity but not bone loss in mice. J Cell Physiol 218:376–384

    Article  PubMed  CAS  Google Scholar 

  18. Hie M, Shimono M, Fujii K, Tsukamoto I (2007) Increased cathepsin K and tartrate-resistant acid phosphatase expression in bone of streptozotocin-induced diabetic rats. Bone 41:1045–1050

    Article  PubMed  CAS  Google Scholar 

  19. Quarles LD (2008) Endocrine functions of bone in mineral metabolism regulation. J Clin Investig 118:3820–3828

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Y, Leung PC, Che CT, Chow HK, Wu CF, Wong MS (2008) Improvement of bone properties and enhancement of mineralization by ethanol extract of Fructus Ligustri Lucidi. Br J Nutr 99:494–502

    PubMed  CAS  Google Scholar 

  21. Zhang Y, Dong XL, Leung PC, Che CT, Wong MS (2008) Fructus ligustri lucidi extract improves calcium balance and modulates the calciotropic hormone level and vitamin D-dependent gene expression in aged ovariectomized rats. Menopause 15:558–565

    Article  PubMed  Google Scholar 

  22. Zhang Y, Lai WP, Leung PC, Che CT, Wong MS (2008) Improvement of Ca balance by Fructus Ligustri Lucidi extract in aged female rats. Osteoporos Int 19:235–242

    Article  PubMed  CAS  Google Scholar 

  23. Strehler EE, Caride AJ, Filoteo AG, Xiong Y, Penniston JT, Enyedi A (2007) Plasma membrane Ca2+ ATPases as dynamic regulators of cellular calcium handling. Ann NY Acad Sci 1099:226–236

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Y, Lai WP, Wu CF, Favus MJ, Leung PC, Wong MS (2007) Ovariectomy worsens secondary hyperparathyroidism in mature rats during low Ca diet. Am J Physiol Endocrinol Metab 292:E723–E731

    Article  PubMed  CAS  Google Scholar 

  25. Hendrix I, Anderson P, May B, Morris H (2004) Regulation of gene expression by the CYP27B1 promoter-study of a transgenic mouse model. J Steroid Biochem Mol Biol 89–90:139–142

    Article  PubMed  Google Scholar 

  26. Qi Z, Fujita H, Jin J, Davis LS, Wang Y, Fogo AB, Breyer MD (2005) Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes 54:2628–2637

    Article  PubMed  CAS  Google Scholar 

  27. Silva MJ, Brodt MD, Lynch MA, McKenzie JA, Tanouye KM, Nyman JS, Wang X (2009) Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life. J Bone Miner Res 24:1618–1627

    Article  PubMed  CAS  Google Scholar 

  28. Yamaguchi T, Sugimoto T (2008) Calcium homeostasis and osteoporosis in diabetes mellitus and the metabolic syndrome. Clin Calcium 18:904–911

    PubMed  CAS  Google Scholar 

  29. Lee CT, Lien YH, Lai LW, Chen JB, Lin CR, Chen HC (2006) Increased renal calcium and magnesium transporter abundance in streptozotocin-induced diabetes mellitus. Kidney Int 69:1786–1791

    Article  PubMed  CAS  Google Scholar 

  30. de Luis Román DA, Aller R, Perez Castrillon JL, De Luis J, Gonzalez Sagrado M, Izaola O, Romero E, Martín Escudero JC, Herreros V (2004) Effects of dietary intake and life style on bone density in patients with diabetes mellitus type 2. Ann Nutr Metab 48:141–145

    Article  PubMed  Google Scholar 

  31. Diaz VA, Mainous AG 3rd, Carek PJ, Wessell AM, Everett CJ (2009) The association of vitamin D deficiency and insufficiency with diabetic nephropathy: implications for health disparities. J Am Board Fam Med 22:521–527

    Article  PubMed  Google Scholar 

  32. Heaney RP (2008) Vitamin D in health and disease. Clin J Am Soc Nephrol 3:1535–1541

    Article  PubMed  CAS  Google Scholar 

  33. Danescu LG, Levy S, Levy J (2009) Vitamin D and diabetes mellitus. Endocr 35:11–17

    Article  CAS  Google Scholar 

  34. Mathieu C, Gysemans C, Giulietti A, Bouillon R (2005) Vitamin D and diabetes. Diabetologia 48:1247–1257

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y, Deb DK, Kong J, Ning G, Wang Y, Li G, Chen Y, Zhang Z, Strugnell S, Sabbagh Y, Arbeeny CM, Li YC (2009) Long-term therapeutic effect of vitamin D analog doxercalciferol on diabetic nephropathy: strong synergism with AT1 receptor antagonist. Am J Physiol Ren Physiol 297:F791–F801

    Article  CAS  Google Scholar 

  36. Zhang Z, Zhang Y, Ning G, Kong J, Deb DK, Li YC (2008) Combination therapy with AT1 receptor blocker and vitamin D analog markedly ameliorates diabetic nephropathy. Proc Natl Acad Sci USA 105:15896–15901

    Article  PubMed  CAS  Google Scholar 

  37. Holick MF (2008) Diabetes and the vitamin D connection. Curr Diab Rep 8:393–398

    Article  PubMed  CAS  Google Scholar 

  38. Baeke F, van Etten E, Gysemans C, Overbergh L, Mathieu C (2008) Vitamin D signaling in immune-mediated disorders: evolving insights and therapeutic opportunities. Mol Aspects Med 29:376–387

    Article  PubMed  CAS  Google Scholar 

  39. Panierakis C, Goulielmos G, Mamoulakis D, Petraki E, Papavasiliou E, Galanakis E (2009) Vitamin D receptor gene polymorphisms and susceptibility to type 1 diabetes in Crete, Greece. Clin Immunol 133:276–281

    Article  PubMed  CAS  Google Scholar 

  40. den Dekker E, Hoenderop JG, Nilius B, Bindels RJ (2003) The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation. Cell Calcium 33:497–507

    Article  Google Scholar 

  41. Boros S, Bindels RJ, Hoenderop JG (2009) Active Ca(2+) reabsorption in the connecting tubule. Pflugers Arch 458:99–109

    Article  PubMed  CAS  Google Scholar 

  42. Ward DT, Yau SK, Mee AP, Mawer EB, Miller CA, Garland HO, Riccardi D (2001) Functional, molecular, and biochemical characterization of streptozotocin-induced diabetes. J Am Soc Nephrol 12:779–790

    PubMed  CAS  Google Scholar 

  43. Kip SN, Strehler EE (2004) Vitamin D3 upregulates plasma membrane Ca2+-ATPase expression and potentiates apico-basal Ca2+ flux in MDCK cells. Am J Physiol Ren Physiol 286:F363–F369

    Article  CAS  Google Scholar 

  44. Reidy K, Susztak K (2009) Epithelial–mesenchymal transition and podocyte loss in diabetic kidney disease. Am J Kidney Dis 54:590–593

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was sponsored by Shanghai Pujiang Program (10PJ1407700) and Innovation Program of Shanghai Municipal Education Commission (11ZZ137) for Yan Zhang. HWD was partially supported by grants from NIH (P50AR055081, R01AG026564, R01AR050496, RC2DE020756, R01AR057049, and R03TW008221) and Franklin D. Dickson/Missouri Endowment.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Papasian, C.J. & Deng, HW. Alteration of vitamin D metabolic enzyme expression and calcium transporter abundance in kidney involved in type 1 diabetes-induced bone loss. Osteoporos Int 22, 1781–1788 (2011). https://doi.org/10.1007/s00198-010-1404-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1404-1

Keywords

Navigation