Skip to main content
Log in

Radionuklidanalyse von 228Th und 228Ra

Neue Methode zur Liegezeitbestimmung

Radionuclide analysis of 228Th and 228Ra

New method for estimation of time of death

  • Originalien
  • Published:
Rechtsmedizin Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Bestimmung des postmortalen Intervalls (PMI) an menschlichen Knochenfunden ist prinzipiell mit erheblichen Unsicherheiten behaftet. Ziel der vorgestellten Studie war daher die Entwicklung einer neuen Methode zur Liegezeitbestimmung durch Analyse des Verhältnisses der spezifischen Aktivität von 228Th zu 228Ra im menschlichen Knochen. Die Grundlagen dieses Modells werden erläutert.

Material und Methoden

Es wurden bisher an 38 Knochenproben α-spektrometrische Bestimmungen der spezifischen Aktivität von Thorium sowie γ-spektrometrische Messungen der Aktivität von Radium durchgeführt und hieraus die spezifischen Aktivitätsverhältnisse von 228Th zu 228Ra berechnet.

Ergebnisse

Die Analysen erbrachten eine gute Übereinstimmung mit den wenigen verfügbaren Literaturdaten. Die angewendeten analytischen Methoden sind ausreichend nachweisstark für die erforderlichen Messungen. Eventuelle Kontaminationen der Knochenproben, die zu einer Verfälschung des berechneten PMI führen würden, können zuverlässig erkannt werden.

Schlussfolgerung

Es konnte gezeigt werden, dass sich die vorgestellte Methode zur Liegezeitbestimmung bei postmortalen Intervallen zwischen ca. 2 Monaten und 10 Jahren eignet und nach noch vorzunehmenden analytischen Verbesserungen hohes forensisches Potenzial besitzt.

Abstract

Background

Reliable determination of the postmortem interval (PMI), based on the evaluation of human skeletons or single bones, is often limited by a lack of specific methods. Therefore an attempt was made to develop a new method to narrow down the PMI based on analyses of the specific activity concentrations of the radionuclides 228Th and 228Ra in human bones. The scientific background of this method is explained.

Material and methods

In samples of 38 human bones α-spectrometric analyses of the specific activity concentration of thorium and γ-spectrometric analyses of the specific activity concentration of radium were performed. The activity ratios between 228Th and 228Ra were calculated.

Results

The performed analyses showed accordance with the few data published in the currently available literature.

Conclusions

The theory that the presented method is useable for determination of a PMI between a period of about 2 months and 10 years was corroborated. Some analytical improvements are required to allow optimal use of this important forensic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Argonne National Laboratory (2005) Thorium. Human Health Fact Sheet. ANL, Chicago

  2. Aurand K, Bücker H, Hug O et al (1974) Die natürliche Strahlenexposition des Menschen. Thieme, Stuttgart, S 84

  3. Chao JH, Niu H, Chiu CY, Lin C (2007) A potential dating technique using 228Th/228Ra ratio for tracing the chronosequence of elemental concentrations in plants. Appl Radiat Isot 65:641–648

    Article  PubMed  CAS  Google Scholar 

  4. Ellet W (1988) Health risks of radon and other internally deposited alpha-emitters, BEIR IV. National Academy Press, Washington, S 245

  5. Garg V, Oberoi SS, Gorea RK, Kaur K (2004) Changes in the levels of vitreous potassium with increasing time since death. J Indian Acad Forensic Med 26(4):136–139

    Google Scholar 

  6. Goldin AS, Magno PJ, Kauffmann PE, Coats GI (1967) Measurement of thorium and daughter products in tissue: effect of time on the result. Ann N Y Acad Sci 145(3):654–659

    Article  PubMed  CAS  Google Scholar 

  7. Haas G (1992) Bestimmung des Transfers natürlicher und künstlicher Radionuklide von Futterpflanzen zu Nutz- und Wildtieren. Degree Dissertation, Institute for Biophysics und Physical Biochemistry, University of Regensburg

  8. Haas G, Schupfner R, Mueller A (1995) Transfer of natural and man made radionuclides from plants to roe deer and farm animal. J Radioanal Nucl Chem 194(2):269–276

    Article  CAS  Google Scholar 

  9. Henssge C, Althaus L, Bolt J et al (2000a) Experiences with a compound method for estimating the time since death. I. Rectal temperature nomogram for time since death. Int J Legal Med 113:303–319

    Article  PubMed  CAS  Google Scholar 

  10. Henssge C, Althaus L, Bolt J et al (2000b) Experiences with a compound method for estimating the time since death. II. Integration of non-temperature-based methods. Int J Legal Med 113:320–331

    Article  PubMed  CAS  Google Scholar 

  11. Hursh JB, Steadman LT, Looney WB, Coldozin M (1957) The excretion of thorium and thorium daughters after thorotrast administration. Acta Radiol 47:481–498

    Article  PubMed  CAS  Google Scholar 

  12. Ibrahim SA, Simon SL (2000) Natural radionuclide contents in human whole-body ashes. J Radioanal Nucl Chem 243(2):483–490

    Article  CAS  Google Scholar 

  13. International Commission on Radiological Protection (ICRP) (1975) Report on the task group on reference man. Ann ICRP 23

  14. International Commission on Radiological Protection (ICRP) (1979) Limits for intakes of radionuclides by workers. Ann ICRP 30(3)

  15. International Commission on Radiological Protection (ICRP) (1995) Basic anatomical and physiological data for use in radiological protection: the skeleton. Ann ICRP 25(2)

  16. International Commission on Radiological Protection (ICRP) (1983) Radionuclide transformations: energy and intensity of emissions. Ann ICRP 38

  17. International Commission on Radiological Protection (ICRP) (1993) Age-dependent dose to members of the public from intake of radionuclides: Part 2 – Ingestion dose coefficients. Ann ICRP 67

  18. International Commission on Radiological Protection (ICRP) (1994) Age-dependent dose to members of the public from intake of radionuclides: Part 3 – Ingestion dose coefficients. Ann ICRP 69

  19. International Commission on Radiological Protection (ICRP) (1998) Individual monitoring for internal exposure of workers – Replacement of ICRP Publication 54. Ann ICRP 78

  20. Kandlbinder RF, Geissler V, Schupfner R et al (2009) Analysing of 228Th, 232Th, 228Ra in human bone tissue for the purpose of determining the post mortal interval. J Radioanal Nucl Chem 280(1):113–119

    Article  CAS  Google Scholar 

  21. Kandlbinder RF, Schupfner R, Wolfbeis O (2010) Determination of 228Ra in human bone ash containing significant quantities of 40K and Ca2+. J Radioanal Nucl Chem 283:69–73

    Article  CAS  Google Scholar 

  22. Kandlbinder R (2010) Bestimmung des Verhältnisses von 228Th zu 228Ra in menschlichen Knochen zur Datierung des postmortalen Intervalls. Dissertation, Universität Regensburg

  23. Kluge S (1997) Messung von Thorium mit Hilfe der alphaspektrometrischen Isotopenverdünnungsanalyse nach extraktionschromatographischer Abtrennung von der Probenmatrix. Dissertation, Universität Regensburg

  24. Lucas HF, Edgington DN, Markun F (1970) Natural thorium in human bone. Health Phys 19:739–742

    Article  PubMed  CAS  Google Scholar 

  25. Madea B, Brinkmann B (2006) Handbuch Gerichtliche Medizin, Teil 1. Springer, Berlin Heidelberg New York Tokio, S 195–202

  26. Mall G, Eisenmenger W (2005a) Estimation of time since death by heat-flow finite-element model. Part I: method, model, calibration and validation. Leg Med 7:1–14

    Article  Google Scholar 

  27. Mall G, Eisenmenger W (2005b) Estimation of time since death by heat-flow finite-element model. Part II: application to non-standard cooling conditions and preliminary results in practical casework. Leg Med 7:69–80

    Article  Google Scholar 

  28. Neis P, Hille R, Paschke M et al (1999) Strontium90 for determination of time since death. Forensic Sci Int 99:47–51

    Article  PubMed  CAS  Google Scholar 

  29. Reyss JL, Schmidt S, Latrouite D, Floris S (1996) Age determination of crustacean carpaces using 228Th/228Ra measurements by ultra low level gamma spectrometry. Appl Radiat Isot 47:1049–1053

    Article  CAS  Google Scholar 

  30. Schupfner R (1992) Untersuchungen zum Boden-Pflanzen-Transfer natürlicher Radionuklide in einem Gebiet mit erhöhtem Thoriumgehalt des Bodens. Dissertation, Universität Regensburg

  31. Schupfner R (2006) Bestimmung des Liegezeitraumes durch Analyse von 228Th, 232Th und 228Ra im Knochengewebe. Interner Forschungsbericht, Universität Regensburg

  32. Swift B, Lauder I, Black S, Norris J (2001) An estimation of the post-mortem interval in human skeletal remains: a radionuclide and trace element approach. Forensic Sci Int 117(1–2):73–87

    Google Scholar 

  33. Tandon L, Iyengar GV, Parr RM (1998) A review of radiologically important trace elements in human bones. Appl Radiat Isot 49:903–910

    Article  PubMed  CAS  Google Scholar 

  34. Ubelaker DH, Buchholz BA, Stewart JEB (2006) Analysis of artificial radiocarbon in different skeletal and dental tissue types to evaluate date of death. J Forensic Sci 51:484–488

    Article  PubMed  CAS  Google Scholar 

  35. United Nation Scientific Committees on Effect of Atomic Radiation (UNSCEAR) (1988) Sources, effects and risks of ionizing radiation. UNSCEAR Report, New York, S 59

  36. United Nation Scientific Committees on Effect of Atomic Radiation (UNSCEAR) (1993) Sources and effects of ionizing radiation. UNSCEAR Report, New York, S 66

  37. Van Kaick G, Karaoglon A, Kellerer AM (1994) health effects of internally deposited radionuclides: emphasis on Ra and Th. Proceedings of an International Seminar, Heidelberg, 18.–21.04.1994

  38. Verhoff MK, Kreutz K, Ramsthaler F, Schiwy-Bochhat KH (2006) Forensische Anthropologie und Osteologie – Übersicht und Definition. Dtsch Arztebl 103(12):782–788

    Google Scholar 

Download references

Danksagung

Wir danken der Friedrich-Baur-Stiftung für die finanzielle Förderung des Projekts.

Interessenkonflikt

Die Autoren geben an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zinka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinka, B., Kandlbinder, R., Haas, G. et al. Radionuklidanalyse von 228Th und 228Ra. Rechtsmedizin 21, 124–130 (2011). https://doi.org/10.1007/s00194-010-0722-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00194-010-0722-0

Schlüsselwörter

Keywords

Navigation