Skip to main content
Log in

The original Akagi line is the most reliable: a systematic review of landmarks for rotational alignment of the tibial component in TKA

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

There is no present consensus on the most reliable anatomical landmarks or axes for tibial rotational alignment in total knee arthroplasty (TKA). The goal was therefore to review the literature and compare accuracy and repeatability of different axes for tibial baseplate rotation in TKA.

Methods

Medline and Embase were searched for articles that reported accuracy in terms of error or discrepancy from the trans-epicondylar axes (TEA), and/or repeatability in terms of intraclass correlation coefficient, of one or more axes used for tibial baseplate rotation in TKA. Twenty-one articles met criteria, and their data were extracted and tabulated.

Results

The selected articles evaluated 15 different axes, 13 for reliability, 12 for repeatability. The lowest errors or discrepancies from the projected TEA were reported for the original ‘Akagi line’ (posterior cruciate ligament posteriorly to medial border of tibial tuberosity), its variant using the sulcus of the tibial spines as anterior landmark, as well as the anterior tibial border and the curve-on-curve technique. The best inter-observer repeatabilities were reported for ‘Akagi line’ variants that use the geometric centre of the tibial plateau posteriorly and the medial border of the tibial tuberosity, or the medial sixth of the patellar tendon anteriorly. Considering accuracy and repeatability simultaneously, only two axes were found to satisfy both criteria consistently: the original ‘Akagi line’ and the anterior tibial border.

Conclusions

Because of the small number of studies found, the collected evidence remains insufficient to recommend reference axes for intra-operative rotational alignment of the tibial baseplate in TKA. A combination of two or more anatomical landmarks or projected axes could be used to ensure adequate tibial baseplate rotation, while considering individual patient morphology and implant design to optimize knee kinematics and prevent prosthetic overhang.

Level of evidence

Level IV, systematic review of level III and IV studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TKA:

Total knee arthroplasty

TEA:

Trans-epicondylar axis

m-TS:

Middle of the tibial spines

mb-ATT:

Medial border of the anterior tibial tuberosity

gc-TP:

Geometric centre of the tibial plateau

mt-PT:

Medial third of the patellar tendon

c-PCL:

Centre of the posterior cruciate ligament

ALV:

Akagi line variants

EKA:

European knee associates

ICC:

Intraclass correlations coefficient

CT:

Computed tomography

MRI:

Magnetic resonance imaging

mt-ATT:

Medial third of the anterior tibial tuberosity

ms-PT:

Medial sixth of the patellar tendon

ATB:

Anterior tibial border

ml-TP:

Medio-lateral tibial plateau axis

CoC:

Curve-on-curve technique

TA:

Transmalleolar ankle axis

References

  1. Aglietti P, Sensi L, Cuomo P, Ciardullo A (2008) Rotational position of femoral and tibial components in TKA using the femoral transepicondylar axis. Clin Orthop Relat Res 466(11):2751–2755

    Article  Google Scholar 

  2. Akagi M, Mori S, Nishimura S, Nishimura A, Asano T, Hamanishi C (2005) Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res 436:172–176

    Article  Google Scholar 

  3. Akagi M, Oh M, Nonaka T, Tsujimoto H, Asano T, Hamanishi C (2004) An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res 420:213–219

    Article  Google Scholar 

  4. Baldini A, Indelli PF, Mariani LDEL, Marcucci PC M (2013) Rotational alignment of the tibial component in total knee arthroplasty: the anterior tibial cortex is a reliable landmark. Joints 1(4):155–160

    Article  Google Scholar 

  5. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 392:46–55

    Article  Google Scholar 

  6. Bedard M, Vince KG, Redfern J, Collen SR (2011) Internal rotation of the tibial component is frequent in stiff total knee arthroplasty. Clin Orthop Relat Res 469(8):2346–2355

    Article  Google Scholar 

  7. Bell SW, Young P, Drury C, Smith J, Anthony I, Jones B, Blyth M, McLean A (2014) Component rotational alignment in unexplained painful primary total knee arthroplasty. Knee 21(1):272–277

    Article  Google Scholar 

  8. Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153

    Article  Google Scholar 

  9. Bonnin MP, de Kok A, Verstraete M, Van Hoof T, Van Der Straten C, Saffarini M, Victor J (2017) Popliteus impingement after TKA may occur with well-sized prostheses. Knee Surg Sports Traumatol Arthrosc 25(6):1720–1730

    Article  Google Scholar 

  10. Bonnin MP, Saffarini M, Mercier PE, Laurent JR, Carrillon Y (2011) Is the anterior tibial tuberosity a reliable rotational landmark for the tibial component in total knee arthroplasty? J Arthroplasty 26(2):260–267 (e261–262)

    Article  Google Scholar 

  11. Cicchetti D (1994) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess 6(4):284–290

    Article  Google Scholar 

  12. Dalury DF (2001) Observations of the proximal tibia in total knee arthroplasty. Clin Orthop Relat Res 389:150–155

    Article  Google Scholar 

  13. Dennis DA, Komistek RD, Mahfouz MR, Outten JT, Sharma A (2005) Mobile-bearing total knee arthroplasty: do the polyethylene bearings rotate? Clin Orthop Relat Res 440:88–95

    Article  Google Scholar 

  14. Drexler M, Backstein D, Studler U, Lakstein D, Haviv B, Schwarzkopf R, Rutenberg TF, Warschawski Y, Rath E, Kosashvili Y (2017) The medial border of the tibial tuberosity as an auxiliary tool for tibial component rotational alignment during total knee arthroplasty (TKA). Knee Surg Sports Traumatol Arthrosc 25(6):1736–1742

    Article  Google Scholar 

  15. Eckhoff DG, Johnston RJ, Stamm ER, Kilcoyne RF, Wiedel JD (1994) Version of the osteoarthritic knee. J Arthroplasty 9(1):73–79

    Article  CAS  Google Scholar 

  16. Eckhoff DG, Metzger RG, Vandewalle MV (1995) Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop Relat Res 321:28–31

    Google Scholar 

  17. Feczko PZ, Pijls BG, van Steijn MJ, van Rhijn LW, Arts JJ, Emans PJ (2016) Tibial component rotation in total knee arthroplasty. BMC Musculoskelet Disord 17:87

    Article  Google Scholar 

  18. Graw BP, Harris AH, Tripuraneni KR, Giori NJ (2010) Rotational references for total knee arthroplasty tibial components change with level of resection. Clin Orthop Relat Res 468(10):2734–2738

    Article  Google Scholar 

  19. Hernandez-Vaquero D, Noriega-Fernandez A, Fernandez-Carreira JM, Fernandez-Simon JM, Llorens de los Rios J (2014) Computer-assisted surgery improves rotational positioning of the femoral component but not the tibial component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(12):3127–3134

    Article  Google Scholar 

  20. Heyse TJ, Stiehl JB, Tibesku CO (2015) Measuring tibial component rotation of TKA in MRI: what is reproducible? Knee 22(6):604–608

    Article  Google Scholar 

  21. Howell SM, Chen J, Hull ML (2013) Variability of the location of the tibial tubercle affects the rotational alignment of the tibial component in kinematically aligned total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(10):2288–2295

    Article  Google Scholar 

  22. Huijbregts HJ, Khan RJ, Sorensen E, Fick DP, Haebich S (2016) Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty. Acta Orthop 87(4):386–394

    Article  Google Scholar 

  23. Ikeuchi M, Yamanaka N, Okanoue Y, Ueta E, Tani T (2007) Determining the rotational alignment of the tibial component at total knee replacement: a comparison of two techniques. J Bone Jt Surg Br 89(1):45–49

    Article  CAS  Google Scholar 

  24. Indelli PF, Graceffa A, Baldini A, Payne B, Pipino G, Marcucci M (2015) Relationship between tibial baseplate design and rotational alignment landmarks in primary total knee arthroplasty. Arthritis 2015:189294

    Article  Google Scholar 

  25. Indelli PF, Graceffa A, Marcucci M, Baldini A (2016) Rotational alignment of the tibial component in total knee arthroplasty. Ann Transl Med 4(1):3

    PubMed  PubMed Central  Google Scholar 

  26. Ishii Y, Noguchi H, Sato J, Todoroki K, Toyabe S (2015) Rotational alignment of tibial components in mobile-bearing TKA: posterior substituted vs. PCL retaining. Arch Orthop Trauma Surg 135(9):1299–1305

    Article  Google Scholar 

  27. Kawahara S, Okazaki K, Matsuda S, Mitsuyasu H, Nakahara H, Okamoto S, Iwamoto Y (2014) Medial sixth of the patellar tendon at the tibial attachment is useful for the anterior reference in rotational alignment of the tibial component. Knee Surg Sports Traumatol Arthrosc 22(5):1070–1075

    Article  Google Scholar 

  28. Kim CW, Seo SS, Kim JH, Roh SM, Lee CR (2014) The anteroposterior axis of the tibia in Korean patients undergoing total knee replacement. Bone Jt J 96-b(11):1485–1490

    Article  CAS  Google Scholar 

  29. Kim JI, Jang J, Lee KW, Han HS, Lee S, Lee MC (2017) Anterior tibial curved cortex is a reliable landmark for tibial rotational alignment in total knee arthroplasty. BMC Musculoskelet Disord 18(1):252

    Article  Google Scholar 

  30. Kim YH, Park JW, Kim JS, Park SD (2014) The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis. Int Orthop 38(2):379–385

    Article  Google Scholar 

  31. Kuriyama S, Hyakuna K, Inoue S, Tamaki Y, Ito H, Matsuda S (2014) Tibial rotational alignment was significantly improved by use of a CT-navigated control device in total knee arthroplasty. J Arthroplasty 29(12):2352–2356

    Article  Google Scholar 

  32. LaCour MT, Sharma A, Carr CB, Komistek RD, Dennis DA (2014) Confirmation of long-term in vivo bearing mobility in eight rotating-platform TKAs. Clin Orthop Relat Res 472(9):2766–2773

    Article  Google Scholar 

  33. Lutzner J, Firmbach FP, Lutzner C, Dexel J, Kirschner S (2015) Similar stability and range of motion between cruciate-retaining and cruciate-substituting ultracongruent insert total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 23(6):1638–1643

    Article  Google Scholar 

  34. Lutzner J, Krummenauer F, Gunther KP, Kirschner S (2010) Rotational alignment of the tibial component in total knee arthroplasty is better at the medial third of tibial tuberosity than at the medial border. BMC Musculoskelet Disord 11:57

    Article  Google Scholar 

  35. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

    Article  Google Scholar 

  36. Moskal JT, Capps SG (2014) Rotating-platform TKA no different from fixed-bearing TKA regarding survivorship or performance: a meta-analysis. Clin Orthop Relat Res 472(7):2185–2193

    Article  Google Scholar 

  37. Ng VY, Arnott L, Li J, Hopkins R, Lewis J, Sutphen S, Nicholson L, Reader D, McShane MA (2014) Comparison of custom to standard TKA instrumentation with computed tomography. Knee Surg Sports Traumatol Arthrosc 22(8):1833–1842

    Article  Google Scholar 

  38. Nicoll D, Rowley DI (2010) Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Jt Surg Br 92(9):1238–1244

    Article  CAS  Google Scholar 

  39. Park A, Nam D, Friedman MV, Duncan ST, Hillen TJ, Barrack RL (2015) Inter-observer precision and physiologic variability of mri landmarks used to determine rotational alignment in conventional and patient-specific TKA. J Arthroplasty 30(2):290–295

    Article  Google Scholar 

  40. Parratte S, Blanc G, Boussemart T, Ollivier M, Le Corroller T, Argenson JN (2013) Rotation in total knee arthroplasty: no difference between patient-specific and conventional instrumentation. Knee Surg Sports Traumatol Arthrosc 21(10):2213–2219

    Article  Google Scholar 

  41. Sahin N, Atici T, Kurtoglu U, Turgut A, Ozkaya G, Ozkan Y (2013) Centre of the posterior cruciate ligament and the sulcus between tubercle spines are reliable landmarks for tibial component placement. Knee Surg Sports Traumatol Arthrosc 21(10):2384–2391

    Article  Google Scholar 

  42. Seo JG, Moon YW, Kim SM, Park SH (2015) How to minimize rotational conflict between femoral and tibial component in total knee arthroplasty: the use of femoro-tibial axial synchronizer (Linker). Yonsei Med J 56(2):454–459

    Article  Google Scholar 

  43. Shukla S, Upadhyaya V, Goel M, Gupta S (2017) Antero-posterior axis of tibia in patient undergoing total knee replacement in Indian population. J Clin Orthop Trauma. https://doi.org/10.1016/j.jcot.2017.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  44. Silva A, Sampaio R, Pinto E (2014) Patient-specific instrumentation improves tibial component rotation in TKA. Knee Surg Sports Traumatol Arthrosc 22(3):636–642

    Article  Google Scholar 

  45. Siston RA, Goodman SB, Patel JJ, Delp SL, Giori NJ (2006) The high variability of tibial rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 452:65–69

    Article  Google Scholar 

  46. Sun T, Lu H, Hong N, Wu J, Feng C (2009) Bony landmarks and rotational alignment in total knee arthroplasty for Chinese osteoarthritic knees with varus or valgus deformities. J Arthroplasty 24(3):427–431

    Article  Google Scholar 

  47. Tao K, Cai M, Zhu Y, Lou L, Cai Z (2014) Aligning the tibial component with medial border of the tibial tubercle—is it always right? Knee 21(1):295–298

    Article  Google Scholar 

  48. Uehara K, Kadoya Y, Kobayashi A, Ohashi H, Yamano Y (2002) Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 402:196–201

    Article  Google Scholar 

  49. Vertullo CJ, Easley ME, Scott WN, Insall JN (2001) Mobile bearings in primary knee arthroplasty. J Am Acad Orthop Surg 9(6):355–364

    Article  CAS  Google Scholar 

  50. Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J (2014) Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res 472(1):263–271

    Article  Google Scholar 

  51. Wen Y, Liu D, Huang Y, Li B (2011) A meta-analysis of the fixed-bearing and mobile-bearing prostheses in total knee arthroplasty. Arch Orthop Trauma Surg 131(10):1341–1350

    Article  Google Scholar 

  52. Wernecke GC, Harrris IA, Seeto BG, Chen DB, MacDessi SJ (2016) Normal femorotibial rotational alignment and implications for total knee arthroplasty: an MRI analysis. HSS J 12(3):216–222

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Ryan J. Reynolds for his assistance with literature review and data collection, and to Mr. Antoine Barnaud for producing illustrations of (Fig. 1). The authors are grateful for the coordination and guidance of the European Knee Association (EKA) in conducting the study and interpreting its findings.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

MS participated in study design, literature review, data collection, and manuscript writing. LN participated in literature review, data collection, figures and tables and manuscript writing. RT participated in study design and manuscript editing. RB participated in study design and manuscript editing. LBM participated in literature review and manuscript editing. MTH participated in study design and manuscript editing. PGI participated in study design and manuscript writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mo Saffarini.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Ethical approval was not required as this is a pure review of the literature not involving humans nor animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saffarini, M., Nover, L., Tandogan, R. et al. The original Akagi line is the most reliable: a systematic review of landmarks for rotational alignment of the tibial component in TKA. Knee Surg Sports Traumatol Arthrosc 27, 1018–1027 (2019). https://doi.org/10.1007/s00167-018-5131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-5131-z

Keywords

Navigation