Skip to main content
Log in

Influence of tibial rotation in total knee arthroplasty on knee kinematics and retropatellar pressure: an in vitro study

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Although continuous improvements have been made, there is still a considerable amount of unsatisfied patients after total knee arthroplasty (TKA). A main reason for this high percentage is anterior knee pain, which is supposed to be provoked by post-operative increased retropatellar peak pressure. Since rotational malalignment of the implant is believed to contribute to post-operative pain, the aim of this study was to examine the influence of tibial component rotation on knee kinematics and retropatellar pressure.

Methods

Eight fresh-frozen knee specimens were tested in a weight-bearing knee rig after fixed-bearing TKA under a loaded squat from 20° to 120° of flexion. To examine tibial components with different rotations, special inlays with 3° internal rotation and 3° external rotation were produced and retropatellar pressure distribution was measured with a pressure-sensitive film. The kinematics of the patella and the femorotibial joint were recorded with an ultrasonic-based motion analysis system.

Results

Retropatellar peak pressure decreased significantly from 3° internal rotation to neutral position and 3° external rotation of the tibial component (8.5 ± 2.3 vs. 8.2 ± 2.4 vs. 7.8 ± 2.5 MPa). Regarding knee kinematics femorotibial rotation and anterior–posterior translation, patella rotation and tilt were altered significantly, but relative changes remained minimal.

Conclusion

Changing tibial rotation revealed a high in vitro influence on retropatellar peak pressure. We recommend the rotational alignment of the tibial component to the medial third of the tibial tuberosity or even more externally beyond that point to avoid anterior knee pain after TKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ali A, Sundberg M, Robertsson O, Dahlberg LE, Thorstensson CA, Redlund-Johnell I, Kristiansson I, Lindstrand A (2014) Dissatisfied patients after total knee arthroplasty: a registry study involving 114 patients with 8–13 years of followup. Acta Orthop 85(3):229–233

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anderson JG, Wixson RL, Tsai D, Stulberg SD, Chang RW (1996) Functional outcome and patient satisfaction in total knee patients over the age of 75. J Arthroplasty 11(7):831–840

    Article  CAS  PubMed  Google Scholar 

  3. Anglin C, Brimacombe JM, Hodgson AJ, Masri BA, Greidanus NV, Tonetti J, Wilson DR (2008) Determinants of patellar tracking in total knee arthroplasty. Clin Biomech (Bristol, Avon) 23(7):900–910

    Article  CAS  Google Scholar 

  4. Arnout N, Vanlommel L, Vanlommel J, Luyckx JP, Labey L, Innocenti B, Victor J, Bellemans J (2014) Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3167-2

    PubMed  Google Scholar 

  5. Bonnin MP, Saffarini M, Mercier PE, Laurent JR, Carrillon Y (2011) Is the anterior tibial tuberosity a reliable rotational landmark for the tibial component in total knee arthroplasty? J Arthroplasty 26(2):260–267 e1–e2

    Article  PubMed  Google Scholar 

  6. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD (2010) Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not? Clin Orthop Relat Res 468(1):57–63

    Article  PubMed  Google Scholar 

  7. Boyd AD Jr, Ewald FC, Thomas WH, Poss R, Sledge CB (1993) Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg Am 75(5):674–681

    PubMed  Google Scholar 

  8. Bull AM, Katchburian MV, Shih YF, Amis AA (2002) Standardisation of the description of patellofemoral motion and comparison between different techniques. Knee Surg Sports Traumatol Arthrosc 10(3):184–193

    Article  CAS  PubMed  Google Scholar 

  9. Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A (2004) A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res 428:180–189

    Article  PubMed  Google Scholar 

  10. Didden K, Luyckx T, Bellemans J, Labey L, Innocenti B, Vandenneucker H (2010) Anteroposterior positioning of the tibial component and its effect on the mechanics of patellofemoral contact. J Bone Joint Surg Br 92(10):1466–1470

    Article  CAS  PubMed  Google Scholar 

  11. Dunbar MJ, Robertsson O, Ryd L, Lidgren L (2001) Appropriate questionnaires for knee arthroplasty: results of a survey of 3600 patients from The Swedish Knee Arthroplasty Registry. J Bone Joint Surg Br 83(3):339–344

    Article  CAS  PubMed  Google Scholar 

  12. Fuchs S, Skwara A, Tibesku CO, Rosenbaum D (2005) Retropatellar contact characteristics before and after total knee arthroplasty. Knee 12(1):9–12

    Article  PubMed  Google Scholar 

  13. Harman MK, Banks SA, Kirschner S, Lutzner J (2012) Prosthesis alignment affects axial rotation motion after total knee replacement: a prospective in vivo study combining computed tomography and fluoroscopic evaluations. BMC Musculoskelet Disord 13:206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hauschild O, Muenzberg M, Knothe D, Konstantinidis L, Helwig P, Sudkamp NP, Thielemann FW (2013) Rotational limb alignment changes following total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(10):2346–2354

    Article  PubMed  Google Scholar 

  15. Hernandez-Vaquero D, Noriega-Fernandez A, Fernandez-Carreira JM, Fernandez-Simon JM, Llorens de Los Rios J (2014) Computer-assisted surgery improves rotational positioning of the femoral component but not the tibial component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(12):3127–3134

    Article  PubMed  Google Scholar 

  16. Heyse TJ, Becher C, Kron N, Ostermeier S, Hurschler C, Schofer MD, Tibesku CO, Fuchs-Winkelmann S (2010) Patellofemoral pressure after TKA in vitro: highly conforming vs. posterior stabilized inlays. Arch Orthop Trauma Surg 130(2):191–196

    Article  PubMed  Google Scholar 

  17. Howell SM, Chen J, Hull ML (2013) Variability of the location of the tibial tubercle affects the rotational alignment of the tibial component in kinematically aligned total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(10):2288–2295

    Article  PubMed  Google Scholar 

  18. Howell SM, Hodapp EE, Vernace JV, Hull ML, Meade TD (2013) Are undesirable contact kinematics minimized after kinematically aligned total knee arthroplasty? An intersurgeon analysis of consecutive patients. Knee Surg Sports Traumatol Arthrosc 21(10):2281–2287

    Article  PubMed  Google Scholar 

  19. Kim YH, Park JW, Kim JS, Park SD (2014) The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis. Int Orthop 38(2):379–385

    Article  PubMed  Google Scholar 

  20. Kulkarni SK, Freeman MA, Poal-Manresa JC, Asencio JI, Rodriguez JJ (2000) The patellofemoral joint in total knee arthroplasty: Is the design of the trochlea the critical factor? J Arthroplasty 15(4):424–429

    Article  CAS  PubMed  Google Scholar 

  21. Lawrie CM, Noble PC, Ismaily SK, Stal D, Incavo SJ (2011) The flexion–extension axis of the knee and its relationship to the rotational orientation of the tibial plateau. J Arthroplasty 26(6 Suppl):53–58 e1

    Article  PubMed  Google Scholar 

  22. Lutzner J, Kirschner S, Gunther KP, Harman MK (2012) Patients with no functional improvement after total knee arthroplasty show different kinematics. Int Orthop 36(9):1841–1847

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lutzner J, Krummenauer F, Gunther KP, Kirschner S (2010) Rotational alignment of the tibial component in total knee arthroplasty is better at the medial third of tibial tuberosity than at the medial border. BMC Musculoskelet Disord 11:57

    Article  PubMed  PubMed Central  Google Scholar 

  24. Matsuzaki T, Matsumoto T, Kubo S, Muratsu H, Matsushita T, Kawakami Y, Ishida K, Oka S, Kuroda R, Kurosaka M (2014) Tibial internal rotation is affected by lateral laxity in cruciate-retaining total knee arthroplasty: an intraoperative kinematic study using a navigation system and offset-type tensor. Knee Surg Sports Traumatol Arthrosc 22(3):615–620

    Article  PubMed  Google Scholar 

  25. Merican AM, Ghosh KM, Iranpour F, Deehan DJ, Amis AA (2011) The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19(9):1479–1487

    Article  CAS  PubMed  Google Scholar 

  26. Nagamine R, Whiteside LA, White SE, McCarthy DS (1994) Patellar tracking after total knee arthroplasty: the effect of tibial tray malrotation and articular surface configuration. Clin Orthop Relat Res 304:262–271

    PubMed  Google Scholar 

  27. Nicoll D, Rowley DI (2010) Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Joint Surg Br 92(9):1238–1244

    Article  CAS  PubMed  Google Scholar 

  28. Noble PC, Conditt MA, Cook KF, Mathis KB (2006) The John Insall Award: patient expectations affect satisfaction with total knee arthroplasty. Clin Orthop Relat Res 452:35–43

    Article  PubMed  Google Scholar 

  29. Noble PC, Fuller-Lafreniere S, Meftah M, Dwyer MK (2013) Challenges in outcome measurement: discrepancies between patient and provider definitions of success. Clin Orthop Relat Res 471(11):3437–3445

    Article  PubMed  PubMed Central  Google Scholar 

  30. Parratte S, Blanc G, Boussemart T, Ollivier M, Le Corroller T, Argenson JN (2013) Rotation in total knee arthroplasty: no difference between patient-specific and conventional instrumentation. Knee Surg Sports Traumatol Arthrosc 21(10):2213–2219

    Article  PubMed  Google Scholar 

  31. Sahin N, Atici T, Ozturk A, Ozkaya G, Ozkan Y, Avcu B (2012) Accuracy of anatomical references used for rotational alignment of tibial component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20(3):565–570

    Article  PubMed  Google Scholar 

  32. Scott RD (2013) Femoral and tibial component rotation in total knee arthroplasty: methods and consequences. Bone Joint J 95-B(11 Suppl A):140–143

    Article  CAS  PubMed  Google Scholar 

  33. Silva A, Sampaio R, Pinto E (2014) Patient-specific instrumentation improves tibial component rotation in TKA. Knee Surg Sports Traumatol Arthrosc 22(3):636–642

    Article  PubMed  Google Scholar 

  34. Siston RA, Patel JJ, Goodman SB, Delp SL, Giori NJ (2005) The variability of femoral rotational alignment in total knee arthroplasty. J Bone Joint Surg Am 87(10):2276–2280

    Article  PubMed  Google Scholar 

  35. Steinbruck A, Schroder C, Woiczinski M, Fottner A, Muller PE, Jansson V (2013) Patellofemoral contact patterns before and after total knee arthroplasty: an in vitro measurement. Biomed Eng Online 12:58

    Article  PubMed  PubMed Central  Google Scholar 

  36. Steinbruck A, Schroder C, Woiczinski M, Fottner A, Muller PE, Jansson V (2014) The effect of trochlea tilting on patellofemoral contact patterns after total knee arthroplasty: an in vitro study. Arch Orthop Trauma Surg 134(6):867–872

    Article  PubMed  Google Scholar 

  37. Stukenborg-Colsman C, Ostermeier S, Burmester O, Wirth CJ (2003) Dynamic in vitro measurement of retropatellar pressure after knee arthroplasty. Orthopade 32(4):319–322

    Article  CAS  PubMed  Google Scholar 

  38. van Kempen RW, Schimmel JJ, van Hellemondt GG, Vandenneucker H, Wymenga AB (2013) Reason for revision TKA predicts clinical outcome: prospective evaluation of 150 consecutive patients with 2-years followup. Clin Orthop Relat Res 471(7):2296–2302

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vandenneucker H, Labey L, Victor J, Vander Sloten J, Desloovere K, Bellemans J (2014) Patellofemoral arthroplasty influences tibiofemoral kinematics: the effect of patellar thickness. Knee Surg Sports Traumatol Arthrosc 22(10):2560–2568

    Article  PubMed  Google Scholar 

  40. Vince KG (2003) Why knees fail. J Arthroplasty 18(3 Suppl 1):39–44

    Article  PubMed  Google Scholar 

  41. Wylde V, Learmonth I, Potter A, Bettinson K, Lingard E (2008) Patient-reported outcomes after fixed- versus mobile-bearing total knee replacement: a multi-centre randomised controlled trial using the Kinemax total knee replacement. J Bone Joint Surg Br 90(9):1172–1179

    Article  CAS  PubMed  Google Scholar 

  42. Zihlmann MS, Stacoff A, Romero J, Quervain IK, Stussi E (2005) Biomechanical background and clinical observations of rotational malalignment in TKA: literature review and consequences. Clin Biomech (Bristol, Avon) 20(7):661–668

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Dr. Auguste Schaedel-Dantscher Foundation for their financial support of this study. We thank Aesculap AG especially PD Dr. Dr. Thomas Grupp for providing CAD-Files of the TKA. Sincere thanks are given to Moritz von Holst for his help in translating our text into English and to Dr. Alexander Crispin (Institute of Biometry and Epidemiology, LMU Munich) for his statistical council.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Steinbrück.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinbrück, A., Schröder, C., Woiczinski, M. et al. Influence of tibial rotation in total knee arthroplasty on knee kinematics and retropatellar pressure: an in vitro study. Knee Surg Sports Traumatol Arthrosc 24, 2395–2401 (2016). https://doi.org/10.1007/s00167-015-3503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3503-1

Keywords

Navigation