Skip to main content
Log in

Can TKA design affect the clinical outcome? Comparison between two guided-motion systems

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

In a retrospective comparative analysis in patients undergoing primary guided-motion total knee arthroplasty (TKA), the authors have evaluated whether different TKA implant design would influence the clinical and functional outcomes.

Methods

Between 2007 and 2009, 227 computer-assisted primary TKAs were performed in 219 consecutive patients. Patients received one of the two different fixed-bearing guided-motion TKA designs assisted by navigation surgery: the Scorpio Non-Restrictive Geometry (NRG) knee system and the Journey Bi-Cruciate Stabilized (BCS) knee systems.

Results

Data were available for 180 patients (187 knees). No significant differences were observed between the two groups with respect to preoperative demographic characteristics, range of motion (ROM) and radiographic knee alignment. At a mean follow-up of 29 months, the Journey BCS group had higher mean Knee Injury and Osteoarthritis Outcome Score (KOOS) in all subscales and a greater ROM than the Scorpio NRG group. This difference was statistically significant for the KOOS subscales of pain (p = 0.007) and knee-related quality of life (p = 0.045), as well as for postoperative ROM (p = 0.018). Considering the overall complications, 1 patient of Scorpio NRG group (0.5 %) and 5 in Journey BCS (2.7 %) had stiffness. Anterior knee pain was reported in 4 cases of Scorpio NRG group (2.1 %). In the Journey BCS group were observed 2 cases (1.1 %) of frontal plane instability and 1 case (0.5 %) of synovitis pain.

Conclusions

The bearing geometry and kinematic pattern of different guided-motion prosthetic designs can affect the clinical–functional outcome and complications type in primary TKA.

Level of evidence

Clinical study, Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Argenson JN, Parratte S, Ashour A, Komistek RD, Scuderi GR (2008) Patient-reported outcome correlates with knee function after a single-design mobile-bearing TKA. Clin Orthop Relat Res 466:2669–2676

    Article  PubMed  Google Scholar 

  2. Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br 84:50–53

    Article  CAS  PubMed  Google Scholar 

  3. Blakeney WJ, Khan JK, Wall SJ (2011) Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty. a randomized trial. J Bone Joint Surg Am 93:1377–1384

    Article  PubMed  Google Scholar 

  4. Boldt JG, Stiehl JB, Hodler J, Zanetti M, Munzinger U (2006) Femoral component rotation and arthrofibrosis following mobile-bearing total knee arthroplasty. Int Orthop 30:420–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Borrione F, Bonnevialle P, Mabit C, Guingand O, Bertin D, Bonnomet F, Denis C, Gagna G (2011) Scorpio single radius total knee arthroplasty. A minimal five-year follow-up multicentric study. Int Orthop 35:1777–1782

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD (2010) Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res 468:57–63

    Article  PubMed  Google Scholar 

  7. Brosseau L, Tousignant M, Budd J, Chartier N, Duciaume L, Plamondon S, O’Sullivan JP, O’Donoghue S, Balmer S (1997) Intratester and intertester reliability and criterion validity of the parallelogram and universal goniometers for active knee flexion in healthy subjects. Physiother Res Int 2:150–166

    Article  CAS  PubMed  Google Scholar 

  8. Catani F, Biasca N, Ensini A, Leardini A, Bianchi L, Digennaro V, Giannini S (2008) Alignment deviation between bone resection and final implant positioning in computer-navigated total knee arthroplasty. J Bone Joint Surg Am 90:765–771

    Article  PubMed  Google Scholar 

  9. Catani F, Innocenti B, Belvedere C, Labey L, Ensini A, Leardini A (2010) The Mark Coventry Award: Articular contact estimation in TKA using in vivo kinematics and finite element analysis. Clin Orthop Relat Res 468:19–28

    Article  PubMed  Google Scholar 

  10. Choi WC, Lee S, Seong SC, Jung JH, Lee MC (2010) Comparison between standard and high-flexion posterior-stabilized rotating-platform mobile-bearing total knee arthroplasties: a randomized controlled study. J Bone Joint Surg Am 92:2634–2642

    Article  PubMed  Google Scholar 

  11. Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118

    Article  PubMed  Google Scholar 

  12. Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57

    Article  PubMed  Google Scholar 

  13. Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A (2004) A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res 428:180–189

    Article  PubMed  Google Scholar 

  14. Edwards JZ, Greene KA, Davis RS, Kovacik MW, Noe DA, Askew MJ (2004) Measuring flexion in knee arthroplasty patients. J Arthroplasty 19:369–372

    Article  PubMed  Google Scholar 

  15. Ensini A, Catani F, Leardini A, Romagnoli M, Giannini S (2007) Alignments and clinical results in conventional and navigated total knee arthroplasty. Clin Orthop Relat Res 457:156–162

    CAS  PubMed  Google Scholar 

  16. Fukunaga K, Kobayashi A, Minoda Y, Iwaki H, Hashimoto Y, Takaoka K (2009) The incidence of the patellar clunk syndrome in a recently designed mobile-bearing posteriorly stabilised total knee replacement. J Bone Joint Surg Br 91:463–468

    Article  CAS  PubMed  Google Scholar 

  17. Gioe TJ, Glynn J, Sembrano J, Suthers K, Santos ER, Singh J (2009) Mobile and fixed-bearing (all-polyethylene tibial component) total knee arthroplasty designs. A prospective randomized trial. J Bone Joint Surg Am 91:2104–2112

    Article  PubMed  Google Scholar 

  18. Gomez-Barrena E, Fernandez-Garcia C, Fernandez-Bravo A, Cutillas-Ruiz R, Bermejo-Fernandez G (2010) Functional performance with a single-radius femoral design total knee arthroplasty. Clin Orthop Relat Res 468:1214–1220

    Article  PubMed  Google Scholar 

  19. Gunston FH (1971) Polycentric knee arthroplasty. Prosthetic simulation of normal knee movement. J Bone Joint Surg Br 53:272–277

    CAS  PubMed  Google Scholar 

  20. Hoffart HE, Langenstein E, Vasak N (2012) A prospective study comparing the functional outcome of computer-assisted and conventional total knee replacement. J Bone Joint Surg Br 94:194–199

    Article  PubMed  Google Scholar 

  21. Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG (1993) The axes of rotation of the knee. Clin Orthop Relat Res 290:259–268

    PubMed  Google Scholar 

  22. Insall JN, Lachiewicz PF, Burstein AH (1982) The posterior stabilized condylar prosthesis: a modification of the total condylar design. Two to four-year clinical experience. J Bone Joint Surg Am 64:1317–1323

    CAS  PubMed  Google Scholar 

  23. Ip D, Wu WC, Tsang WL (2002) Comparison of two total knee prostheses on the incidence of patella clunk syndrome. Int Orthop 26:48–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ip D, Ko PS, Lee OB, Wu WC, Lam JJ (2004) Natural history and pathogenesis of the patella clunk syndrome. Arch Orthop Trauma Surg 124:597–602

    Article  CAS  PubMed  Google Scholar 

  25. Jenny JY, Boeri C, Picard F, Leitner F (2004) Reproducibility of intra-operative measurement of the mechanical axes of the lower limb during total knee replacement with a non-image-based navigation system. Comput Aided Surg 9:161–165

    PubMed  Google Scholar 

  26. Kessler O, Durselen L, Banks S, Mannel H, Marin F (2007) Sagittal curvature of total knee replacements predicts in vivo kinematics. Clin Biomech (Bristol, Avon) 22:52–58

    Article  Google Scholar 

  27. Khan MM, Khan MW, Al-Harbi HH, Weening BS, Zalzal PK (2012) Assessing short-term functional outcomes and knee alignment of computer-assisted navigated total knee arthroplasty. J Arthroplasty 27:271–277

    Article  PubMed  Google Scholar 

  28. Kim J, Nelson CL, Lotke PA (2004) Stiffness after total knee arthroplasty. Prevalence of the complication and outcomes of revision. J Bone Joint Surg Am 86:1479–1484

    Article  PubMed  Google Scholar 

  29. Lachiewicz PF, Soileau ES (2004) The rates of osteolysis and loosening associated with a modular posterior stabilized knee replacement. Results at five to fourteen years. J Bone Joint Surg Am 86:525–530

    Article  PubMed  Google Scholar 

  30. Lingard EA, Katz JN, Wright RJ, Wright EA, Sledge CB (2001) Validity and responsiveness of the Knee Society Clinical Rating System in comparison with the SF-36 and WOMAC. J Bone Joint Surg Am 83:1856–1864

    PubMed  Google Scholar 

  31. Lingard EA, Katz JN, Wright EA, Sledge CB (2004) Predicting the outcome of total knee arthroplasty. J Bone Joint Surg Am 86:2179–2186

    PubMed  Google Scholar 

  32. Lonner JH, Jasko JG, Bezwada HP, Nazarian DG, Booth RE Jr (2007) Incidence of patellar clunk with a modern posterior-stabilized knee design. Am J Orthop (Belle Mead NJ) 36:550–553

    Google Scholar 

  33. Maloney WJ, Schmidt R, Sculco TP (2003) Femoral component design and patellar clunk syndrome. Clin Orthop Relat Res 410:199–202

    Article  PubMed  Google Scholar 

  34. Malviya A, Lingard EA, Weir DJ, Deehan DJ (2009) Predicting range of movement after knee replacement: the importance of posterior condylar offset and tibial slope. Knee Surg Sports Traumatol Arthrosc 17:491–498

    Article  PubMed  Google Scholar 

  35. Marx RG, Grimm P, Lillemoe KA, Robertson CM, Ayeni OR, Lyman S, Bogner EA, Pavlov H (2011) Reliability of lower extremity alignment measurement using radiographs and PACS. Knee Surg Sports Traumatol Arthrosc 19:1693–1698

    Article  CAS  PubMed  Google Scholar 

  36. Massin P, Gournay A (2006) Optimization of the posterior condylar offset, tibial slope, and condylar roll-back in total knee arthroplasty. J Arthroplasty 21:889–896

    Article  PubMed  Google Scholar 

  37. Monticone M, Ferrante S, Salvaderi S, Rocca B, Totti V, Foti C, Roi GS (2012) Development of the Italian version of the knee injury and osteoarthritis outcome score for patients with knee injuries: cross-cultural adaptation, dimensionality, reliability, and validity. Osteoarthr Cartilage 20:330–335

    Article  CAS  Google Scholar 

  38. Nilsdotter AK, Toksvig-Larsen S, Roos EM (2009) Knee arthroplasty: are patients’ expectations fulfilled? A prospective study of pain and function in 102 patients with 5-year follow-up. Acta Orthop 80:55–61

    Article  PubMed  Google Scholar 

  39. Padua R, Ceccarelli E, Bondi R, Campi A, Padua L (2007) Range of motion correlates with patient perception of TKA outcome. Clin Orthop Relat Res 460:174–177

    CAS  PubMed  Google Scholar 

  40. Pitto RP, Graydon AJ, Bradley L, Malak SF, Walker CG, Anderson IA (2006) Accuracy of a computer-assisted navigation system for total knee replacement. J Bone Joint Surg Br 88:601–605

    Article  CAS  PubMed  Google Scholar 

  41. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee injury and osteoarthritis outcome score (KOOS)–development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96

    Article  CAS  PubMed  Google Scholar 

  42. Roos EM, Toksvig-Larsen S (2003) Knee injury and osteoarthritis outcome score (KOOS)—validation and comparison to the WOMAC in total knee replacement. Health Qual Life Outcomes 1:17

    Article  PubMed Central  PubMed  Google Scholar 

  43. Rubinstein RA Jr, DeHaan A (2010) The incidence and results of manipulation after primary total knee arthroplasty. Knee 17:29–32

    Article  PubMed  Google Scholar 

  44. Seon JK, Park SJ, Lee KB, Li G, Kozanek M, Song EK (2009) Functional comparison of total knee arthroplasty performed with and without a navigation system. Int Orthop 33:987–990

    Article  PubMed Central  PubMed  Google Scholar 

  45. Spencer JM, Chauhan SK, Sloan K, Taylor A, Beaver RJ (2007) Computer navigation versus conventional total knee replacement: no difference in functional results at two years. J Bone Joint Surg Br 89:477–480

    Article  CAS  PubMed  Google Scholar 

  46. Tamaki M, Tomita T, Watanabe T, Yamazaki T, Yoshikawa H, Sugamoto K (2009) In vivo kinematic analysis of a high-flexion, posterior-stabilized, mobile-bearing knee prosthesis in deep knee bending motion. J Arthroplasty 24:972–978

    Article  PubMed  Google Scholar 

  47. Tayot O, Ait Si Selmi T, Neyret P (2001) Results at 11.5 years of a series of 376 posterior stabilized HLS1 total knee replacements. Survivorship analysis, and risk factors for failure. Knee 8:195–205

    Article  CAS  PubMed  Google Scholar 

  48. Thadani PJ, Vince KG, Ortaaslan SG, Blackburn DC, Cudiamat CV (2000) Ten- to 12-year followup of the Insall-Burstein I total knee prosthesis. Clin Orthop Relat Res 380:17–29

    Article  PubMed  Google Scholar 

  49. Victor J, Hoste D (2004) Image-based computer-assisted total knee arthroplasty leads to lower variability in coronal alignment. Clin Orthop Relat Res 428:131–139

    Article  PubMed  Google Scholar 

  50. Wang H, Simpson KJ, Chamnongkich S, Kinsey T, Mahoney OM (2005) A biomechanical comparison between the single-axis and multi-axis total knee arthroplasty systems for the stand-to-sit movement. Clin Biomech (Bristol, Avon) 20:428–433

    Article  CAS  Google Scholar 

  51. Yercan HS, Sugun TS, Bussiere C, Ait Si Selmi T, Davies A, Neyret P (2006) Stiffness after total knee arthroplasty: prevalence, management and outcomes. Knee 13:111–117

    Article  PubMed  Google Scholar 

  52. Zmistowski B, Restrepo C, Kahl LK, Parvizi J, Sharkey PF (2011) Incidence and reasons for nonrevision reoperation after total knee arthroplasty. Clin Orthop Relat Res 469:138–145

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Fennema Peter for his review of an earlier version of this work, with constructive criticism, and for English language editing. Also, we would like to express gratitude to Claudio Belvedere for his contribution in the statistical analysis.

Conflict of interest

All the authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Mugnai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mugnai, R., Digennaro, V., Ensini, A. et al. Can TKA design affect the clinical outcome? Comparison between two guided-motion systems. Knee Surg Sports Traumatol Arthrosc 22, 581–589 (2014). https://doi.org/10.1007/s00167-013-2509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-013-2509-9

Keywords

Navigation