Skip to main content
Log in

Patellar tracking during total knee arthroplasty: an in vitro feasibility study

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Abnormal patellar tracking results in patello-femoral (PF) joint disorders and frequently in failure of total knee arthroplasty (TKA). It is fundamental to assess this tracking intra-operatively, i.e. since the implantation of the femoral and tibial components. The aim of this study was to assess the feasibility of three-dimensional anatomical-based patellar tracking intra-operatively in standard TKA. A surgical navigation system was utilized to test the new technique in-vitro. An original tracking device and a reference frame were designed and an articular convention for the description of PF joint kinematics was adopted. Six fresh-frozen amputated legs were analyzed with the new technique. Landmark digitations were used to define anatomical reference frames for the femur, tibia, and patella. Five trials of passive flexion were performed with 100 N force on the quadriceps, before and after standard knee arthroplasty. Patellar flexion, tilt, rotation and shift were calculated in addition to standard tibio-femoral (TF) joint kinematics. An intra-specimen repeatable path of motion over repetitions and a coupled path of motion throughout the flexion-extension cycle were observed in all intact knees, both at the TF and PF joints. Replication of the original PF motion in the intact knee was not fully accomplished in the replaced knee. These results revealed the feasibility and the necessity of patellar tracking during TKA. By monitoring intra-operatively also the PF kinematics, the surgeon has a more complete prediction of the performance of the final implant and therefore a valuable support for the most critical surgical decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed AM, Duncan NA, Tanzer M (1999) In vitro measurement of the tracking pattern of the human patella. J Biomech Eng 121:222–228

    PubMed  CAS  Google Scholar 

  2. Ahmed AM, Shih HN, Hyder A, Chan KH (1988) The effect of the quadriceps tension characteristics on the patellar tracking pattern. Trans Orthop Res Soc 13:280

    Google Scholar 

  3. Andriacchi TP, Yoder D, Conley A, Rosenberg A, Sum J, Galante JO (1997) Patellofemoral design influences function following total knee arthroplasty. J Arthroplasty 12:243–249

    Article  PubMed  CAS  Google Scholar 

  4. Asano T, Akagi M, Koike K, Nakamura T (2003) In vivo three-dimensional patellar tracking on the femur. Clin Orthop Relat Res 413:222–232

    Article  PubMed  Google Scholar 

  5. Barrack RL, Burak C (2001) Patella in total knee arthroplasty. Clin Orthop Relat Res 389:62–73

    Article  PubMed  Google Scholar 

  6. Bindelglass DF, Vince KG (1996) Patellar tilt and subluxation following subvastus and parapatellar approach in total knee arthroplasty. Implication for surgical technique. J Arthroplasty 11:507–511

    Article  PubMed  CAS  Google Scholar 

  7. Bourne RB, Burnett RS (2004) The consequences of not resurfacing the patella. Clin Orthop Relat Res 428:166–169

    Article  PubMed  Google Scholar 

  8. Brunet ME, Brinker MR, Cook SD, Christakis P, Fong B, Patron L, O’Connor DP (2003) Patellar tracking during simulated quadriceps contraction. Clin Orthop Relat Res 414:266–275

    Article  PubMed  Google Scholar 

  9. Buff HU, Jones LC, Hungerford DS (1988) Experimental determination of forces transmitted through the patello-femoral joint. J Biomech 21:17–23

    Article  PubMed  CAS  Google Scholar 

  10. Bull AM, Katchburian MV, Shih YF, Amis AA (2002) Standardisation of the description of patellofemoral motion and comparison between different techniques. Knee Surg Sports Traumatol Arthrosc 10:184–193

    Article  PubMed  CAS  Google Scholar 

  11. Burnett RS, Bourne RB (2004) Indications for patellar resurfacing in total knee arthroplasty. Instr Course Lect 53:167–186

    PubMed  Google Scholar 

  12. Cappozzo A, Catani F, Croce UD, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol Avon) 10:171–178

    Article  Google Scholar 

  13. Chew JT, Stewart NJ, Hanssen AD, Luo ZP, Rand JA, An KN (1997) Differences in patellar tracking and knee kinematics among three different total knee designs. Clin Orthop Relat Res 345:87–98

    Article  PubMed  Google Scholar 

  14. Eisenhart-Rothe R, Siebert M, Bringmann C, Vogl T, Englmeier KH, Graichen H (2004) A new in vivo technique for determination of 3D kinematics and contact areas of the patello-femoral and tibio-femoral joint. J Biomech 37:927–934

    Article  Google Scholar 

  15. Elias DA, White LM (2004) Imaging of patellofemoral disorders. Clin Radiol 59:543–557

    Article  PubMed  CAS  Google Scholar 

  16. Fulkerson JP (2002) Diagnosis and treatment of patients with patellofemoral pain. Am J Sports Med 30:447–456

    PubMed  Google Scholar 

  17. Goh JC, Lee PY, Bose K (1995) A cadaver study of the function of the oblique part of vastus medialis. J Bone Joint Surg Br 77:225–231

    PubMed  CAS  Google Scholar 

  18. Grelsamer RP (2000) Patellar malalignment. J Bone Joint Surg Am 82-A:1639–1650

    PubMed  CAS  Google Scholar 

  19. Grelsamer RP, Weinstein CH (2001) Applied biomechanics of the patella. Clin Orthop Relat Res 389:9–14

    Article  PubMed  Google Scholar 

  20. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    Article  PubMed  CAS  Google Scholar 

  21. Hanson RJ, Norris MJ (1981) Analysis of measurements based on the singular value decomposition. SIAM J Sci Stat Comput 2:363–373

    Article  Google Scholar 

  22. Harwin SF (1998) Patellofemoral complications in symmetrical total knee arthroplasty. J Arthroplasty 13:753–762

    Article  PubMed  CAS  Google Scholar 

  23. Heegaard J, Leyvraz PF, Curnier A, Rakotomanana L, Huiskes R (1995) The biomechanics of the human patella during passive knee flexion. J Biomech 28:1265–1279

    Article  PubMed  CAS  Google Scholar 

  24. Hefzy MS, Jackson WT, Saddemi SR, Hsieh YF (1992) Effects of tibial rotations on patellar tracking and patello-femoral contact areas. J Biomed Eng 14:329–343

    Article  PubMed  CAS  Google Scholar 

  25. Hehne HJ (1990) Biomechanics of the patellofemoral joint and its clinical relevance. Clin Orthop Relat Res 258:73–85

    PubMed  Google Scholar 

  26. Hsu HC, Luo ZP, Rand JA, An KN (1997) Influence of lateral release on patellar tracking and patellofemoral contact characteristics after total knee arthroplasty. J Arthroplasty 12:74–83

    Article  PubMed  CAS  Google Scholar 

  27. Katchburian MV, Bull AM, Shih YF, Heatley FW, Amis AA (2003) Measurement of patellar tracking: assessment and analysis of the literature. Clin Orthop Relat Res 412:241–259

    Article  PubMed  Google Scholar 

  28. Koh TJ, Grabiner MD, De Swart RJ (1992) In vivo tracking of the human patella. J Biomech 25:637–643

    Article  PubMed  CAS  Google Scholar 

  29. Kwak SD, Ahmad CS, Gardner TR, Grelsamer RP, Henry JH, Blankevoort L, Ateshian GA, Mow VC (2000) Hamstrings and iliotibial band forces affect knee kinematics and contact pattern. J Orthop Res 18:101–108

    Article  PubMed  CAS  Google Scholar 

  30. Lafortune MA, Cavanagh PR, Sommer HJ III, Kalenak A (1992) Three-dimensional kinematics of the human knee during walking. J Biomech 25:347–357

    Article  PubMed  CAS  Google Scholar 

  31. Laprade J, Lee R (2005) Real-time measurement of patellofemoral kinematics in asymptomatic subjects. Knee 12:63–72

    Article  PubMed  Google Scholar 

  32. Ledger M, Shakespeare D, Scaddan M (2005) Accuracy of patellar resection in total knee replacement. A study using the medial pivot knee. Knee 12:13–19

    PubMed  Google Scholar 

  33. Sakai N, Luo ZP, Rand JA, An KN (2000) The influence of weakness in the vastus medialis oblique muscle on the patellofemoral joint: an in vitro biomechanical study. Clin Biomech (Bristol Avon) 15:335–339

    Article  CAS  Google Scholar 

  34. Scuderi GR, Insall JN, Scott NW (1994) Patellofemoral pain after total knee arthroplasty. J Am Acad Orthop Surg 2:239–246

    PubMed  Google Scholar 

  35. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM (2002) Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res 404:7–13

    Article  PubMed  Google Scholar 

  36. Sheehan FT, Zajac FE, Drace JE (1998) Using cine phase contrast magnetic resonance imaging to non-invasively study in vivo knee dynamics. J Biomech 31:21–26

    Article  PubMed  CAS  Google Scholar 

  37. Sheehan FT, Zajac FE, Drace JE (1999) In vivo tracking of the human patella using cine phase contrast magnetic resonance imaging. J Biomech Eng 121(6):650–656

    PubMed  CAS  Google Scholar 

  38. Shih YF, Bull AM, McGregor AH, Amis AA (2004) Active patellar tracking measurement: a novel device using ultrasound. Am J Sports Med 32:1209–1217

    Article  PubMed  Google Scholar 

  39. Singerman R, Berilla J, Kotzar G, Daly J, Davy DT (1994) A six-degree-of-freedom transducer for in vitro measurement of patellofemoral contact forces. J Biomech 27:233–238

    Article  PubMed  CAS  Google Scholar 

  40. Sparmann M, Wolke B, Czupalla H, Banzer D, Zink A (2003) Positioning of total knee arthroplasty with and without navigation support. A prospective, randomised study. J Bone Joint Surg Br 85:830–835

    PubMed  CAS  Google Scholar 

  41. Stiehl JB (2005) A clinical overview patellofemoral joint and application to total knee arthroplasty. J Biomech 38:209–214

    Article  PubMed  Google Scholar 

  42. Tang TS, MacIntyre NJ, Gill HS, Fellows RA, Hill NA, Wilson DR, Ellis RE (2004) Accurate assessment of patellar tracking using fiducial and intensity-based fluoroscopic techniques. Med Image Anal 8:343–351

    Article  PubMed  CAS  Google Scholar 

  43. Van Kampen A, Huiskes R (1990) The three-dimensional tracking pattern of the human patella. J Orthop Res 8:372–382

    Article  PubMed  Google Scholar 

  44. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion-part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 35:543–548

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Belvedere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belvedere, C., Catani, F., Ensini, A. et al. Patellar tracking during total knee arthroplasty: an in vitro feasibility study. Knee Surg Sports Traumatol Arthr 15, 985–993 (2007). https://doi.org/10.1007/s00167-007-0320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-007-0320-1

Keywords

Navigation