Skip to main content
Log in

Ventrale Skolioseoperationen

Stand der Technik und Vergleich mit dorsalen Verfahren

Anterior scoliosis surgery

State of the art and a comparison with posterior techniques

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Als Goldstandard der Formkorrektur und Stabilisierung von Skoliosen über den vorderen Zugangsweg wurde über mehr als 2 Jahrzehnte die ventrale Derotationsspondylodese (VDS) nach Zielke als maßgebliche Weiterentwicklung der Dwyer-Instrumentation (DI) angesehen. Sie ermöglicht als erstes Implantatsystem eine effektive dreidimensionale Formkorrektur. Nachteilig sind die geringen internen Stabilisierungseigenschaften des Implantats mit dem Risiko des Stabbruches und der Pseudarthrose, die eine langmonatige Ruhigstellung im Rumpfgips oder Korsett notwendig machen. Durch die Entwicklung primärstabiler ventraler Einstab- und insbesondere Doppelstabsysteme können diese Nachteile mittlerweile vollständig eliminiert werden. Thorakoskopische Skolioseoperationen haben sich mit einem Anteil von <2% wegen langer Operationszeiten und hoher Lernkurve nicht entscheidend durchsetzen können.

Dorsal galt über lange Zeit das Cotrel-Dubousset-Instrumentarium (CDI), ein hakengetragenes polysegmental angreifendes Doppelstabsystem als „state of the art“, da es die Nachteile des weitgehend eindimensional korrigierenden, nicht primärstabilen Harrington-Systems (HI) weitgehend eliminierte, wenngleich eine effektive Derotation nicht möglich war. Bei den dorsalen Verfahren gibt es zzt. sowohl für den Lumbal- als auch Thorakalbereich einen starken Trend weg von hakengetragenen, polysegmental angreifenden Doppelstabsystemen zu transpedikulär segmental fixierten Doppelstabsystemen mit dem Vorteil kürzerer Fusionsbezirke, besserer Korrektur und geringerem Korrekturverlust im Nachbeobachtungszeitraum.

Vorteile moderner ventraler Instrumentationssysteme sind im Vergleich zu modernen dorsalen transpedikulär getragenen Doppelstabsystemen insbesondere der geringere Blutverlust, die bessere Derotation, der im Trend immer noch kürzere Fusionsbereich und der bessere Einfluss auf das Profil der Wirbelsäule bei hypokyphotischen Thorakalskoliosen. Unsere Daten belegen auch eine bessere Spontankorrektur der lumbalen Nebenkrümmung bei selektiver Korrektur von Thorakalskoliosen (Lenke-Typ 1B+C), obwohl andere Studien keine signifikanten Unterschiede finden konnten. Nach unserer Erfahrung ist auch das neurologische Risiko geringer, selbst wenn die Morbiditäts- und Mortalitätsstatistiken der „Scoliosis Research Society“ dieses in den letzten Jahren nicht mehr belegt haben. Nachteilig ist nach neueren Untersuchungen der negativere Effekt ventraler (transthorakaler) Eingriffe auf die Lungenfunktion, die sich im Vergleich zu dorsalen Verfahren postoperativ langsamer erholt und nicht ganz die Werte dorsaler Verfahren erreicht. Neueste Untersuchungen belegen aber auch für dorsale pedikelschraubengetragene Korrekturen einen lordosierenden Effekt mit negativem Einfluss auf die Lungenfunktion

Abstract

For more than 2 decades ventral derotation spondylodesis (Zielke VDS) as a major improvement over Dwyer instrumentation (DI) was the gold standard of instrumented curve correction and stabilization from the anterior approach. As the first available system it enables a true three-dimensional curve correction. A disadvantage is the low internal stabilization capability with a need for long-term external stabilization by means of cast and brace treatment postoperatively. Meanwhile with the development of modern single and dual solid rod systems these disadvantages can be avoided completely. Video-assisted (thoracoscopic) anterior scoliosis surgery accounts for less than 2% of anteriorly treated scoliosis cases, mainly due to a long operating time and significant learning curve.

From the posterior approach the Cotrel-Dubousset instrumentation (CDI) as a polysegmentally attached posterior hook threaded dual rod system used to be state of the art for a long time, since it eliminated the disadvantages of Harrington instrumentation (HI) in terms of only one-dimensional correction and low stabilization capabilities. However even with CDI effective derotation was impossible. In posterior scoliosis surgery there is a strong trend away from hook systems towards transpedicular segmentally fixed dual rod systems not only in the lumbar spine but also in the thoracic area. Advantages of these newer techniques are shorter fusion, improved correction, and less loss of correction over time.

Advantages of modern anterior instrumentation systems in comparison to posterior transpedicular instrumented dual rod systems are less blood loss, better derotation, slightly shorter fusion levels, and a better influence on sagittal plane control or improvement especially for hypokyphotic thoracic scoliosis cases. Our data also document a superior spontaneous correction of the lumbar curve after selective anterior instrumented correction (Lenke 1B+C), although other studies could not find significant differences. In our experience the neurological risk of anterior instrumented correction is also lower than that of posterior scoliosis surgery, although the morbidity and mortality data of the Scoliosis Research Society could not prove that anymore in recent years. A negative effect of anterior transthoracic scoliosis surgery in comparison to posterior surgery is a more negative effect on lung function, which improves slower after surgery and does not quite reach the levels of posterior surgery at follow-up. But new data on posterior segmental transpedicular correction and fusion also prove a lordosating effect with negative effect on lung function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11

Literatur

  1. Betz RR, Harms J, Clements DH et al (1999) Comparison of anterior and posterior instrumentation for correction of adolescent thoracic idiopathic scoliosis. Spine 24(3): 225–239

    Article  PubMed  CAS  Google Scholar 

  2. Bullmann V, Fallenberg EM, Meier N et al (2006) The position of the aorta relative to the spine before and after anterior instrumentation in right thoracic scoliosis. Spine 31(15): 1706–1713

    Article  PubMed  Google Scholar 

  3. Bullmann V, Fallenberg EM, Meier N et al (2005) Anterior dual rod instrumentation in idiopathic thoracic scoliosis: a computed tomography analysis of screw placement relative to the aorta and the spinal canal. Spine 30(18): 2078–2083

    Article  PubMed  Google Scholar 

  4. Bullmann V, Halm HF, Niemeyer T et al (2003) Dual-rod correction and instrumentation of idiopathic scoliosis with the Halm-Zielke instrumentation. Spine 28(12): 1306–1313

    Article  PubMed  Google Scholar 

  5. Bullmann V, Halm HF, Schulte T et al (2006) Combined anterior and posterior instrumentation in severe and rigid idiopathic scoliosis. Eur Spine J 15(4): 440–448

    Article  PubMed  Google Scholar 

  6. Burton DC, Asher MA, Lai SM (2002) Patient-based outcomes analysis of patients with single torsion thoracolumbar-lumbar scoliosis treated with anterior or posterior instrumentation: an average 5- to 9-year follow-up study. Spine 27(21): 2363–2367

    Article  PubMed  Google Scholar 

  7. Cotrel Y, Dubousset J, Guillaumat M (1988) New universal instrumentation in spinal surgery. Clin Orthop Relat Res 227: 10–23

    PubMed  CAS  Google Scholar 

  8. Dubousset J, Cotrel Y (1991) Application technique of Cotrel-Dubousset instrumentation for scoliosis deformities. Clin Orthop Relat Res (264): 103–110

    Google Scholar 

  9. Dwyer AF, Newton NC, Sherwood AA (1969) An anterior approach to scoliosis. A preliminary report. Clin Orthop Relat Res 62: 192–202

    Article  PubMed  CAS  Google Scholar 

  10. Eysel P, Hopf C, Diop A, Lavaste F (1995) Multi-segment ventral stabilization of the lumbar spine: a comparative biomechanical study. Z Orthop Ihre Grenzgeb 133(3): 242–248

    Article  PubMed  CAS  Google Scholar 

  11. Faro FD, Marks MC, Newton PO et al (2005) Perioperative changes in pulmonary function after anterior scoliosis instrumentation: thoracoscopic versus open approaches. Spine 30(9): 1058–1063

    Article  PubMed  Google Scholar 

  12. Giehl JP, Zielke K, Hack HP (1989) Die Ventrale Derotationsspondylodese nach Zielke. Orthopadie 18: 101–117

    CAS  Google Scholar 

  13. Halm H (1994) Augmentation of VDS (ventral derotation spondylodesis) using double rod instrumentation: surgical method and early results. Z Orthop Ihre Grenzgeb 132(5): 383–389

    Article  PubMed  CAS  Google Scholar 

  14. Halm H (1997) Biomechanische und klinische Untersuchungen zur Optimierung der Formkorrektur und Stabilisierung von idiopathischen Skoliosen. Habilitationsschrift, Westfälische Wilhelms-Universität Münster

  15. Halm H, Castro WH, Jerosch J, Winkelmann W (1995) Sagittal plane correction in „King-classified“ idiopathic scoliosis patients treated with Cotrel-Dubousset instrumentation. Acta Orthop Belg 61(4): 294–301

    PubMed  CAS  Google Scholar 

  16. Halm H, Liljenqvist U, Castro WH, Jerosch J (1995) Surgical treatment of idiopathic thoracolumbar scoliosis: Contrell-Dubousset instrumentation versus ventral derotation spondylodesis. Z Orthop Ihre Grenzgeb 133(3): 282–288

    Article  PubMed  CAS  Google Scholar 

  17. Halm H, Liljenqvist U, Niemeyer T et al (1997) Halm-Zielke instrumentation (Munster Anterior Double Rod System) as an improvement over Zielke-VDS. Surgical method and preliminary results. Z Orthop Ihre Grenzgeb 135(5): 403–411

    Article  PubMed  CAS  Google Scholar 

  18. Halm H, Liljeqvist U, Link T et al (1996) Computerized tomography monitoring of the position of pedicle screws in scoliosis surgery. Z Orthop Ihre Grenzgeb 134(6): 492–497

    Article  PubMed  CAS  Google Scholar 

  19. Halm H, Niemeyer T, Halm B et al (2000) Halm-Zielke instrumentation as primary stable improvement of the Zielke-VDS in idiopathic scoliosis. 1 to 4 year outcome of a prospective study of 29 consecutive patients. Orthopade 29(6): 563–570

    Article  PubMed  CAS  Google Scholar 

  20. Halm H, Niemeyer T, Link T, Liljenqvist U (2000) Segmental pedicle screw instrumentation in idiopathic thoracolumbar and lumbar scoliosis. Eur Spine J 9(3): 191–197

    Article  PubMed  CAS  Google Scholar 

  21. Halm HF, Liljenqvist U, Niemeyer T et al (1998) Halm-Zielke instrumentation for primary stable anterior scoliosis surgery: operative technique and 2-year results in ten consecutive adolescent idiopathic scoliosis patients within a prospective clinical trial. Eur Spine J 7(5): 429–434

    Article  PubMed  CAS  Google Scholar 

  22. Hamill CL, Lenke LG, Bridwell KH et al (1996) The use of pedicle screw fixation to improve correction in the lumbar spine of patients with idiopathic scoliosis. Is it warranted? Spine 21(10): 1241–1249

    Article  PubMed  CAS  Google Scholar 

  23. Harrington PR (1962) Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 44: 591–610

    PubMed  Google Scholar 

  24. Hopf CG, Eysel P, Dubousset J (1997) Operative treatment of scoliosis with Cotrel-Dubousset-Hopf instrumentation. New anterior spinal device. Spine 22(6): 618–627

    Article  PubMed  CAS  Google Scholar 

  25. Hurford RK Jr, Lenke LG, Lee SS et al (2006) Prospective radiographic and clinical outcomes of dual-rod instrumented anterior spinal fusion in adolescent idiopathic scoliosis: comparison with single-rod constructs. Spine 31(20): 2322–2328

    Article  PubMed  Google Scholar 

  26. Johnston CE, Richards BS, Sucato DJ et al (2008) Decreased pulmonary function in postop. AIS patients who remain hypokyphotic. Abstract booklet, 15th international meeting of advanced spine techniques July 8-11, Hong Kong, pp 108–109

  27. Kaneda K, Shono Y, Satoh S, Abumi K (1996) New anterior instrumentation for the management of thoracolumbar and lumbar scoliosis. Application of the Kaneda two-rod system. Spine 21(10): 1250–1261

    Article  PubMed  CAS  Google Scholar 

  28. Kaneda K, Shono Y, Satoh S, Abumi K (1997) Anterior correction of thoracic scoliosis with Kaneda anterior spinal system. A preliminary report. Spine 22(12): 1358–1368

    Article  PubMed  CAS  Google Scholar 

  29. Kim YJ, Lenke LG, Bridwell KH et al (2008) Prospective pulmonary function comparison of anterior spinal fusion in adolescent idiopathic scoliosis: thoracotomy versus thoracoabdominal approach. Spine 33(10): 1055–1060

    Article  PubMed  Google Scholar 

  30. Kim YJ, Lenke LG, Bridwell KH et al (2005) Pulmonary function in adolescent idiopathic scoliosis relative to the surgical procedure. J Bone Joint Surg Am 87(7): 1534–1541

    Article  PubMed  Google Scholar 

  31. King HA, Moe JH, Bradford DS, Winter RB (1983) The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am 65(9): 1302–1313

    PubMed  CAS  Google Scholar 

  32. Kishan S, Bastrom T, Betz RR et al (2007) Thoracoscopic scoliosis surgery affects pulmonary function less than thoracotomy at 2 years postsurgery. Spine 32(4): 453–458

    Article  PubMed  Google Scholar 

  33. Krismer M, Bauer R, Sterzinger W (1992) Scoliosis correction by Cotrel-Dubousset instrumentation. The effect of derotation and three dimensional correction. Spine 17(Suppl 8): 263–269

    Article  Google Scholar 

  34. Kuklo TR, Lehman RA Jr, Lenke LG (2005) Structures at risk following anterior instrumented spinal fusion for thoracic adolescent idiopathic scoliosis. J Spinal Disord Tech 18(Suppl): 58–64

    Article  Google Scholar 

  35. Kuklo TR, Lenke LG, O’Brien MF et al (2005) Accuracy and efficacy of thoracic pedicle screws in curves more than 90 degrees. Spine 30(2): 222–226

    Article  PubMed  Google Scholar 

  36. Kuklo TR, O’Brien MF, Lenke LG et al (2006) Comparison of the lowest instrumented, stable and lower end vertebrae in „single overhang“ thoracic adolescent idiopathic scoliosis: anterior versus posterior spinal fusion. Spine 31(19): 2232–2236

    Article  PubMed  Google Scholar 

  37. Kuklo TR, Potter BK, Lenke LG et al (2007) Surgical revision rates of hooks versus hybrid versus screws versus combined anteroposterior spinal fusion for adolescent idiopathic scoliosis. Spine 32(20): 2258–2264

    Article  PubMed  Google Scholar 

  38. Kuklo TR, Potter BK, Polly DW Jr, Lenke LG (2005) Monaxial versus multiaxial thoracic pedicle screws in the correction of adolescent idiopathic scoliosis. Spine 30(18): 2113–2120

    Article  PubMed  Google Scholar 

  39. Lee SM, Suk SI, Chung ER (2004) Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine 29(3): 343–349

    Article  PubMed  Google Scholar 

  40. Lehman RA Jr, Lenke LG, Keeler KA et al (2008) Operative treatment of adolescent idiopathic scoliosis with posterior pedicle screw-only constructs: minimum three-year follow-up of one hundred fourteen cases. Spine 33(14): 1598–1604

    Article  PubMed  Google Scholar 

  41. Lenke LG, Newton PO, Marks MC et al (2004) Prospective pulmonary function comparison of open versus endoscopic anterior fusion combined with posterior fusion in adolescent idiopathic scoliosis. Spine 29(18): 2055–2060

    Article  PubMed  Google Scholar 

  42. Liljenqvist U, Halm H (1998) Augmentation of VDS(ventral derotation spondylodesis) by double rod instrumentation. A critical analysis of 2-to-4-year outcomes. Z Orthop Ihre Grenzgeb 136(1): 50–56

    Article  PubMed  CAS  Google Scholar 

  43. Liljenqvist UR, Allkemper T, Hackenberg L et al (2002) Analysis of vertebral morphology in idiopathic scoliosis with use of magnetic resonance imaging and multiplanar reconstruction. J Bone Joint Surg Am 84(3): 359–368

    PubMed  Google Scholar 

  44. Liljenqvist UR, Bullmann V, Schulte TL et al (2006) Anterior dual rod instrumentation in idiopathic thoracic scoliosis. Eur Spine J 15(7): 1118–1127

    Article  PubMed  Google Scholar 

  45. Liljenqvist UR, Halm HF, Link TM (1997) Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis. Spine 22(19): 2239–2245

    Article  PubMed  CAS  Google Scholar 

  46. Liljenqvist UR, Link TM, Halm HF (2000) Morphometric analysis of thoracic and lumbar vertebrae in idiopathic scoliosis. Spine 25(10): 1247–1253

    Article  PubMed  CAS  Google Scholar 

  47. Luhmann SJ, Lenke LG, Kim YJ et al (2005) Thoracic adolescent idiopathic scoliosis curves between 70 degrees and 100 degrees: is anterior release necessary? Spine 30(18): 2061–2067

    Article  PubMed  Google Scholar 

  48. Luque ER (1982) Segmental spinal instrumentation for correction of scoliosis. Clin Orthop Relat Res 163: 192–198

    PubMed  Google Scholar 

  49. Muschik MT, Kimmich H, Demmel T (2006) Comparison of anterior and posterior double-rod instrumentation for thoracic idiopathic scoliosis: results of 141 patients. Eur Spine J 15(7): 1128–1138

    Article  PubMed  Google Scholar 

  50. Newton PO, Parent S, Marks M, Pawelek J (2005) Prospective evaluation of 50 consecutive scoliosis patients surgically treated with thoracoscopic anterior instrumentation. Spine 30(Suppl 17): 100–109

    Article  Google Scholar 

  51. Newton PO, Perry A, Bastrom TP et al (2007) Predictors of change in postoperative pulmonary function in adolescent idiopathic scoliosis: a prospective study of 254 patients. Spine 32(17): 1875–1882

    Article  PubMed  Google Scholar 

  52. Oda I, Cunningham BW, Lee GA et al (2000) Biomechanical properties of anterior thoracolumbar multisegmental fixation: an analysis of construct stiffness and screw-rod strain. Spine 25(18): 2303–2311

    Article  PubMed  CAS  Google Scholar 

  53. Patel PN, Upasani VV, Bastrom TP et al (2008) Spontaneous lumbar curve correction in selective thoracic fusions of idiopathic scoliosis: a comparison of anterior and posterior approaches. Spine 33(10): 1068–1073

    Article  PubMed  Google Scholar 

  54. Richards BS, Birch JG, Herring JA et al (1989) Frontal plane and sagittal plane balance following Cotrel-Dubousset instrumentation for idiopathic scoliosis. Spine 14(7): 733–737

    Article  PubMed  CAS  Google Scholar 

  55. Sanders AE, Baumann R, Brown H et al (2003) Selective anterior fusion of thoracolumbar/lumbar curves in adolescents: when can the associated thoracic curve be left unfused? Spine 28(7): 706–713

    Article  PubMed  Google Scholar 

  56. Schulte TL, Liljenqvist U, Hierholzer E et al (2006) Spontaneous correction and derotation of secondary curves after selective anterior fusion of idiopathic scoliosis. Spine 31(3): 315–321

    Article  PubMed  Google Scholar 

  57. Shimamoto N, Kotani Y, Shono Y et al (2001) Biomechanical evaluation of anterior spinal instrumentation systems for scoliosis: in vitro fatigue simulation. Spine 26(24): 2701–2708

    Article  PubMed  CAS  Google Scholar 

  58. Shimamoto N, Kotani Y, Shono Y et al (2003) Static and dynamic analysis of five anterior instrumentation systems for thoracolumbar scoliosis. Spine 28(15):1678–1685

    Article  PubMed  Google Scholar 

  59. Suk SI, Kim JH, Cho KJ et al (2007) Is anterior release necessary in severe scoliosis treated by posterior segmental pedicle screw fixation? Eur Spine J 16(9): 1359–1365

    Article  PubMed  Google Scholar 

  60. Suk SI, Lee SM, Chung ER et al (2005) Selective thoracic fusion with segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis: more than 5-year follow-up. Spine 30(14): 1602–1609

    Article  PubMed  Google Scholar 

  61. Suk SI, Lee SM, Chung ER et al (2003) Determination of distal fusion level with segmental pedicle screw fixation in single thoracic idiopathic scoliosis. Spine 28(5): 484–491

    Article  PubMed  Google Scholar 

  62. Thompson JP, Transfeldt EE, Bradford DS et al (1990) Decompensation after Cotrel-Dubousset instrumentation of idiopathic scoliosis. Spine 15(9): 927–931

    Article  PubMed  CAS  Google Scholar 

  63. Vora V, Crawford A, Babekhir N et al (2007) A pedicle screw construct gives an enhanced posterior correction of adolescent idiopathic scoliosis when compared with other constructs: myth or reality. Spine 32(17): 1869–1874

    Article  PubMed  Google Scholar 

  64. Zhang H, Johnston CE, Pierce WA et al (2006) New rod-plate anterior instrumentation for thoracolumbar/lumbar scoliosis: biomechanical evaluation compared with dual-rod and single-rod with structural interbody support. Spine 31(25): 934–940

    Article  Google Scholar 

  65. Zielke K (1982) Ventral derotation spondylodesis. Results of treatment of cases of idiopathic lumbar scoliosis (author’s (author’s transl). Z Orthop Ihre Grenzgeb 120(3): 320–329

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Beratervertrag mit DePuy Spine Int. Trotz des möglichen Interessenkonflikts ist der Beitrag unabhängig und produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Halm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halm, H., Richter, A., Thomsen, B. et al. Ventrale Skolioseoperationen. Orthopäde 38, 131–145 (2009). https://doi.org/10.1007/s00132-008-1365-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-008-1365-7

Schlüsselwörter

Keywords

Navigation