Skip to main content
Log in

Die Technik der Mikrofrakturierung zur operativen Therapie von Knorpelläsionen am Talus

Microfracture technique for the treatment of articular cartilage lesions of the talus

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Die Technik der Mikrofrakturierung hat sich in der Therapie von Knorpelläsionen am Talus etabliert. Die Indikation zur arthroskopischen Mikrofrakturierung besteht bei symptomatischer chondraler oder osteochondraler Läsion ab Stadium II, wenn der Knorpel bei der Begutachtung mit dem Tasthaken deutlich erweicht oder aufgebrochen ist. Bei ausgedehnten degenerativen Veränderungen ist die Indikation kritisch zu stellen. Im Rahmen einer prospektiven Studie zeigte sich in einem mittelfristigen Nachuntersuchungszeitraum eine signifikante (p<0,001) Verbesserung der klinischen Ergebnisse zu allen Nachuntersuchungszeitpunkten. Mit dem Hannover Nachuntersuchungsscore OSG wurden nach durchschnittlich 5,2 (3,8–6,6) Jahren bei 23 nachuntersuchten Patienten 87% der Ergebnisse als sehr gut oder gut beurteilt. Das Alter des Patienten spielte für das Ergebnis keine Rolle. Übergewichtige Patienten zeigten signifikant (p=0,03) schlechtere Ergebnisse als normalgewichtige Patienten. MR-tomographisch zeigt sich in den meisten Fällen eine Defektauffüllung mit einem inhomogenen Ersatzgewebe und häufig persistierenden subchondralen Veränderungen. Bei symptomatischen chondralen oder osteochondralen Läsionen steht mit der Technik der Mikrofrakturierung eine arthroskopisch durchführbare operative Methode mit guten Erfolgsaussichten zur Verfügung.

Abstract

The microfracture technique is an established method for treating articular cartilage lesions of the talus. Symptomatic chondral or osteochondral lesions of grade II or higher with softening or fraying of the chondral surface or an unstable rim are indications for débridement of the lesion and use of the microfracture technique. In advanced degenerative lesions, the indication must be determined critically. In a prospective study, significant (p<0.001) improvement was observed at a mean follow-up of 5.2 years (range 3.8–6.6 years) in 23 ankles. According to the Hannover scoring system, 87% of the patients were rated as excellent or good. Results for patients older than 50 years were not inferior to those for younger patients. Results for overweight patients were significantly (p=0.03) worse compared with patients of normal weight. Magnetic resonance imaging findings revealed that filling of the defect is accomplished in the majority of cases with an inhomogeneous structure of the cartilage repair tissue and a high incidence of subchondral alterations. The microfracture technique appears to be a reliable method for treating chondral and osteochondral lesions of the talus, with good outcomes in a mid-term follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Alexander AH, Lichtman DM (1980) Surgical treatment of transchondral talar-dome fractures (osteochondritis dissecans). Long-term follow-up. J Bone Joint Surg Am 62: 646–652

    PubMed  CAS  Google Scholar 

  2. Assenmacher JA, Kelikian AS, Gottlob C, Kodros S (2001) Arthroscopically assisted autologous osteochondral transplantation for osteochondral lesions of the talar dome: an MRI and clinical follow-up study. Foot Ankle Int 22: 544–551

    PubMed  CAS  Google Scholar 

  3. Aurich M, Squires GR, Reiner A et al. (2005) Differential matrix degradation and turnover in early cartilage lesions of human knee and ankle joints. Arthritis Rheum 52: 112–119

    Article  PubMed  CAS  Google Scholar 

  4. Becher C, Thermann H (2005) Results of microfracture in the treatment of articular cartilage defects of the talus. Foot Ankle Int 26: 583–589

    PubMed  Google Scholar 

  5. Berndt AL, Harty M (1959) Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am 41: 97–102

    Google Scholar 

  6. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47: 487–504

    PubMed  CAS  Google Scholar 

  7. Canale ST, Belding RH (1980) Osteochondral lesions of the talus. J Bone Joint Surg Am 62: 97–102

    PubMed  CAS  Google Scholar 

  8. Carlson CS, Meuten DJ, Richardson DC (1991) Ischemic necrosis of cartilage in spontaneous and experimental lesions of osteochondrosis. J Orthop Res 9: 317–329

    Article  PubMed  CAS  Google Scholar 

  9. Dipaola JD, Nelson DW, Colville MR (1991) Characterizing osteochondral lesions by magnetic resonance imaging. Arthroscopy 7: 101–104

    Article  PubMed  CAS  Google Scholar 

  10. Ettl V, Kenn W, Radke S et al. (2001) Die Rolle der MRT in der Therapie- und Verlaufskontrolle nach operativ therapierter Osteochondrosis dissecans des Talus. Z Orthop Ihre Grenzgeb 139: 157–162

    Article  PubMed  CAS  Google Scholar 

  11. Fink C, Rosenberger RE, Bale RJ et al. (2001) Computer-assisted retrograde drilling of osteochondral lesions of the talus. Orthopade 30: 59–65

    Article  PubMed  CAS  Google Scholar 

  12. Frank A (2001) Arthroskopische Behandlung osteochondraler Läsionen der Talusrolle. Orthopade 30: 37–46

    Article  PubMed  CAS  Google Scholar 

  13. Frisbie DD, Trotter GW, Powers BE et al. (1999) Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg 28: 242–255

    PubMed  CAS  Google Scholar 

  14. Giannini S, Vannini F (2004) Operative treatment of osteochondral lesions of the talar dome: current concepts review. Foot Ankle Int 25: 168–175

    PubMed  Google Scholar 

  15. Gobbi A, Francisco RA, Lubowitz JH et al. (2006) Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy 22: 1085–1092

    Article  PubMed  Google Scholar 

  16. Guhl JF (1982) Arthroscopic treatment of osteochondritis dissecans. Clin Orthop: 65–74

    Google Scholar 

  17. Hangody L, Kish G, Modis L et al. (2001) Mosaicplasty for the treatment of osteochondritis dissecans of the talus: two to seven year results in 36 patients. Foot Ankle Int 22: 552–558

    PubMed  CAS  Google Scholar 

  18. Hintermann B, Boss A, Schafer D (2002) Arthroscopic findings in patients with chronic ankle instability. Am J Sports Med 30: 402–409

    PubMed  Google Scholar 

  19. Hua J, Sakamoto K, Kikukawa T et al. (2007) Evaluation of the suppressive actions of glucosamine on the interleukin-1beta-mediated activation of synoviocytes. Inflamm Res 56: 432–438

    Article  PubMed  CAS  Google Scholar 

  20. Hunziker EB, Rosenberg LC (1996) Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 78: 721–733.

    PubMed  CAS  Google Scholar 

  21. Kimizuka M, Kurosawa H, Fukubayashi T (1980) Load-bearing pattern of the ankle joint. Contact area and pressure distribution. Arch Orthop Trauma Surg 96: 45–49

    Article  PubMed  CAS  Google Scholar 

  22. Knutsen G, Engebretsen L, Ludvigsen TC et al. (2004) Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 86: 455–464

    PubMed  Google Scholar 

  23. König F (1888) Über freie Körper in den Gelenken. Dtsch Z Chir 27: 90–109

    Google Scholar 

  24. Kreuz PC, Steinwachs MR, Erggelet C et al. (2006) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 14: 1119–1125

    Article  PubMed  CAS  Google Scholar 

  25. Kuettner KE, Cole AA (2005) Cartilage degeneration in different human joints. Osteoarthritis Cartilage 13: 93–103

    Article  PubMed  CAS  Google Scholar 

  26. Lahm A, Erggelet C, Steinwachs M, Reichelt A (2000) Arthroscopic management of osteochondral lesions of the talus: results of drilling and usefulness of magnetic resonance imaging before and after treatment. Arthroscopy 16: 299–304

    Article  PubMed  CAS  Google Scholar 

  27. Marlovits S, Striessnig G, Resinger CT et al. (2004) Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 52: 310–319

    Article  PubMed  Google Scholar 

  28. Matthews LS, Hirsch C (1972) Temperatures measured in human cortical bone when drilling. J Bone Joint Surg Am 54: 297–308

    PubMed  CAS  Google Scholar 

  29. Mithoefer K, Williams RJ 3rd, Warren RF et al. (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 87: 1911–1920

    Article  PubMed  Google Scholar 

  30. Mithoefer K, Williams RJ 3rd, Warren RF et al. (2006) High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 34: 1413–1418

    Article  PubMed  Google Scholar 

  31. Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43: 752–767

    PubMed  Google Scholar 

  32. Potter HG, Foo LF (2006) Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair. Am J Sports Med 34: 661–677

    Article  PubMed  Google Scholar 

  33. Pritsch M, Horoshovski H, Farine I (1986) Arthroscopic treatment of osteochondral lesions of the talus. J Bone Joint Surg Am 68: 862–865

    PubMed  CAS  Google Scholar 

  34. Reginster JY, Deroisy R, Rovati LC et al. (2001) Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet 357: 251–256

    Article  PubMed  CAS  Google Scholar 

  35. Reijman M, Pols HA, Bergink AP et al. (2007) Body mass index associated with onset and progression of osteoarthritis of the knee but not of the hip: the Rotterdam Study. Ann Rheum Dis 66: 158–162

    Article  PubMed  CAS  Google Scholar 

  36. Rodrigo JJ, Steadman JR, Silliman JF, Fulstone HA (1994) Improvement in full-thickness chondral defect healing in the human knee after debridement and microfracture using continous passive motion. Am J Knee Surg 7: 109–116

    Google Scholar 

  37. Salter RB, Simmons DF, Malcom BW et al. (1980) The biological effects of continuos passive motion on healing of full-thickness defects in articular cartilage: an experimental investigation in the rabbit. J Bone Joint Surg Am 62: 1232–1235

    PubMed  CAS  Google Scholar 

  38. Sammarco G, Makwana N (2002) Treatment of talar osteochondral lesions using local osteochondral graft. Foot Ankle Int 23: 693–698

    PubMed  Google Scholar 

  39. Saxena A, Eakin C (2007) Articular talar injuries in athletes: results of microfracture and autogenous bone graft. Am J Sports Med 35: 1680–1687

    Article  PubMed  Google Scholar 

  40. Schafer D, Boss A, Hintermann B (2003) Accuracy of arthroscopic assessment of anterior ankle cartilage lesions. Foot Ankle Int 24: 317–320

    PubMed  Google Scholar 

  41. Schöttle P, Oettl G, Agneskirchner J, Imhoff A (2001) Operative Therapie von osteochondralen Läsionen am Talus mit autologer Knorpel-Knochen-Transplantation. Orthopaede 30: 53–58

    Article  Google Scholar 

  42. Setnikar I, Rovati LC (2001) Absorption, distribution, metabolism and excretion of glucosamine sulfate. A review. Arzneimittelforschung 51: 699–725

    PubMed  CAS  Google Scholar 

  43. Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75: 532–553

    PubMed  CAS  Google Scholar 

  44. Steadman JR (1997) Microfracture technique for full-thickness chondral defects: technique and clicical results. Operat Techn Orthop 7: 300–304

    Article  Google Scholar 

  45. Steadman JR, Briggs KK, Rodrigo JJ et al. (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19: 477–484

    Article  PubMed  Google Scholar 

  46. Steinhagen J, Niggemeyer O, Bruns J (2001) Ätiologie und Pathogenese der Osteochondrosis dissecans tali. Orthopade 30: 20–27

    Article  PubMed  CAS  Google Scholar 

  47. Struijs PAA, Tol JL, Bossuyt PMM et al. (2001) Behandlungsstrategien bei osteochondralen Läsionen am Talus – Literaturübersicht. Orthopade 30: 28–36

    Article  PubMed  CAS  Google Scholar 

  48. Taga I, Shino K, Inoue M et al. (1993) Articular cartilage lesions in ankles with lateral ligament injury. An arthroscopic study. Am J Sports Med 21: 120–127

    Article  PubMed  CAS  Google Scholar 

  49. Thermann H (2004) Arthroskopie: Oberes Sprunggelenk. Steinkopff, Darmstadt

  50. Wan L, Asla RJ de, Rubash HE, Li G (2006) Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions. Osteoarthritis Cartilage 14: 1294–1301

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Thermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becher, C., Driessen, A. & Thermann, H. Die Technik der Mikrofrakturierung zur operativen Therapie von Knorpelläsionen am Talus. Orthopäde 37, 196–203 (2008). https://doi.org/10.1007/s00132-008-1213-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-008-1213-9

Schlüsselwörter

Keywords

Navigation