Skip to main content
Log in

Von der tibiofemoralen Instabilität zur Luxation in der Knieendoprothetik

From tibiofemoral instability to dislocation in total knee arthroplasty

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Die tibiofemorale Instabilität wird zunehmend als Versagen einer Knietotalendoprothese (KTEP) wahrgenommen. Bei ausgeprägter Instabilität kann es in seltenen Fällen zur Luxation kommen. Die wichtigsten Ursachen einer Instabilität sind in der nicht richtigen chirurgischen Technik und der falschen Wahl des Kopplungsgrades der Prothese zu suchen. Malalignment, Malrotation und eine intraoperativ nicht korrigierte Instabilität (insbesondere in Flexion) können zu einer instabilen Prothese führen. Kreuzbanderhaltene Prothesen und mobile Inlays sollten nur bei guter Bandbalancierung verwendet werden. Kreuzbandersetzende Prothesen geben eine höhere Stabilität und gelten als insgesamt fehlerverzeihender. Dennoch können schwere Varus- und Valgusinstabilitäten und Flexionsinstabilitäten nicht kompensiert werden. Geführte ungekoppelte Prothesen können schwere beidseitige Bandinsuffizienzen nicht langfristig kompensieren. Hier sollten besser geführte gekoppelte (Rotating-hinge-)Prothesen zur Anwendung kommen. Die exakte Analyse der Ursache einer instabilen oder luxierten Knietotalendoprothese stellt die wichtigste Voraussetzung einer erfolgreichen Behandlung dar. Der Prothesenwechsel stellt die erfolgversprechendste Methode dar. Dabei sollte die Korrektur der implantationsbezogenen Ursachen der Instabilität erfolgen. Nur bei Vorliegen von Bandinsuffizienzen sollte der nächst höhere Kopplungsgrad verwendet werden. Eine Sonderform stellt die posttraumatische Instabilität oder Luxation dar.

Abstract

Tibiofemoral instability is increasingly recognized as a mode of failure in total knee arthroplasty (TKA). Severe instability may lead to dislocation. Wrong surgical technique and wrong choice of constraint of the prostheses are the main causes for instability. Malalignment, malrotation and intraoperatively uncorrected instability especially in flexion may lead to an unstable total knee arthroplasty. Cruciate-retaining designs and mobile platforms can be considered only in the presence of well-balanced ligaments. Cruciate-substituting designs give more stability and many people find them more forgiving. However, correction of varus-valgus instability and severe flexion laxity cannot be provided. Varus-valgus contrained designs cannot compensate for the absence of medial and lateral collateral ligaments. Such cases are most reliably treated with a linked implant (rotating hinge). The exact analysis of the cause of an unstable or dislocated total knee arthroplasty represents the most essential basis of a successful treatment. Exchange of the prostheses represents the most successful procedure. Correction of implantation failures should be performed. A more constrained design should be used if insufficient ligaments are found. Post-traumatic instability or dislocation represents an exception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Akagi M, Oh M, Nonaka T et al. (2004) An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res 420: 213–219

    Article  PubMed  Google Scholar 

  2. Babis GC, Trousdale RT, Morrey BF (2002) The effectiveness of isolated tibial insert exchange in revision total knee arthroplasty. J Bone Joint Surg Am 84: 64–68

    PubMed  Google Scholar 

  3. Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356: 144–153

    Article  PubMed  Google Scholar 

  4. Bert JM (1990) Dislocation/subluxation of meniscal bearing elements after New Jersey low-contact stress total knee arthroplasty. Clin Orthop Relat Res 254: 211–215

    PubMed  Google Scholar 

  5. Bron JL, Saouti R, De Gast A (2007) Posterior knee dislocation after total knee arthroplasty in a patient with multiple sclerosis. A case report. Acta Orthop Belg 73: 118–121

    PubMed  Google Scholar 

  6. Buechel FF, Pappas MJ (1989) New Jersey low contact stress knee replacement system. Ten-year evaluation of meniscal bearings. Orthop Clin North Am 20: 147–177

    PubMed  CAS  Google Scholar 

  7. Chiavetta J, Fehring TK, Odum S et al. (2006) Importance of a balanced-gap technique in rotating-platform knees. Orthopedics 29(Suppl 9): 45–48

    Google Scholar 

  8. Chu CM, Wang SJ, Wu SS (2003) Posterior dislocation of a cruciate-retaining total knee arthroplasty following an acute bacterial infection. Arch Orthop Trauma Surg 123: 121–124

    PubMed  Google Scholar 

  9. Clarke HD, Scuderi GR (2003) Flexion instability in primary total knee replacement. J Knee Surg 16: 123–128

    PubMed  Google Scholar 

  10. Galinat BJ, Vernace JV, Booth RE Jr, Rothman RH (1988) Dislocation of the posterior stabilized total knee arthroplasty. A report of two cases. J Arthroplasty 3: 363–367

    Article  PubMed  CAS  Google Scholar 

  11. Gidwani S, Langkamer VG (2001) Recurrent dislocation of a posterior-stabilized prosthesis: a series of three cases. Knee 8: 317–320

    Article  PubMed  CAS  Google Scholar 

  12. Hasegawa M, Sudo A, Fukuda A, Uchida A (2006) Dislocation of posterior-stabilized mobile-bearing knee prosthesis. A case report. Knee 13: 478–482

    Article  PubMed  Google Scholar 

  13. Hofmann S, Romero J, Roth-Schiffl E, Albrecht T (2003) Rotationsfehlstellungen der Komponenten als Ursache chronischer Schmerzen und vorzeitigem Prothesenversagen bei Knieendoprothesen. Orthopade 32: 469–476

    PubMed  CAS  Google Scholar 

  14. Huang CH, Ma HM, Liau JJ et al. (2002) Late dislocation of rotating platform in New Jersey Low-Contact Stress knee prosthesis. Clin Orthop Relat Res 405: 189–194

    Article  PubMed  Google Scholar 

  15. Joseph TN, Mujtaba M, Chen AL et al. (2001) Efficacy of combined technetium-99m sulfur colloid/indium-111 leukocyte scans to detect infected total hip and knee arthroplasties. J Arthroplasty 16: 753–758

    Article  PubMed  CAS  Google Scholar 

  16. Lombardi AV Jr, Mallory TH, Vaughn BK et al. (1993) Dislocation following primary posterior-stabilized total knee arthroplasty. J Arthroplasty 8: 633–639

    Article  PubMed  Google Scholar 

  17. Matsuda Y, Ishii Y, Noguchi H, Ishii R (2005) Effect of flexion angle on coronal laxity in patients with mobile-bearing total knee arthroplatsy prostheses. J Orthop Sci 10: 37–41

    Article  PubMed  Google Scholar 

  18. McAuley JP, Engh GA (2003) Constraint in total knee arthroplasty: When and what? J Arthroplasty 18: 51–54

    Article  PubMed  Google Scholar 

  19. Pagnano MW, Hanssen AD, Lewallen DG, Stuart MJ (1998) Flexion instability after primary posterior cruciate retaining total knee arthroplasty. Clin Orthop Relat Res 356: 39–46

    Article  PubMed  Google Scholar 

  20. Peters CL, Dienst M, Erickson J (2004) Reconstruction of the medial femoral condyle and medial collateral ligament in total knee arthroplasty using tendoachilles allograft with calcaneal bone block. J Arthroplasty 19: 935–940

    Article  PubMed  Google Scholar 

  21. Pietsch M, Hofmann S (2005) Die isolierte Innenrotationsabweichung der Femurkomponente als Ursache vorzeitigen Knieendoprothesenversagens. Orthop Prax 41: 55–58

    Google Scholar 

  22. Pietsch M, Hofmann S (2006) Wertigkeit der radiologischen Bildgebung beim Kniegelenk für den Orthopäden. Radiologe 46: 55–64

    Article  PubMed  CAS  Google Scholar 

  23. Pritsch M, Fitzgerald Jr RH, Bryan RS (1984) Surgical treatment of ligamentous instability after total knee arthroplasty. Arch Orthop Trauma Surg 102: 154–158

    Article  PubMed  CAS  Google Scholar 

  24. Rao V, Targett JP (2003) Instability after total knee replacement with a mobile-bearing prosthesis in a patient with multiple sclerosis. J Bone Joint Surg Br 85: 731–732

    PubMed  CAS  Google Scholar 

  25. Ridgeway S, Moskal JT (2004) Early instability with mobile-bearing total knee arthroplasty: a series of 25 cases. J Arthroplasty 19: 686–693

    Article  PubMed  Google Scholar 

  26. Seil R, Rupp S, Kohn D (2000) Die Beurteilung der Patellahöhe. In: Wirth CJ, Rudert M (Hrsg) Das patellofemorale Schmerzsyndrom. Steinkopf, Darmstadt, S 66–77

  27. Sharkey PF, Hozack WJ, Booth RE Jr et al. (1992) Posterior dislocation of total knee arthroplasty. Clin Orthop Relat Res 278: 128–133

    PubMed  Google Scholar 

  28. Sharkey PF, Hozack WJ, Rothman RH et al. (2002) Why are total knee arthroplasties failing today? Insall Award Paper. Clin Orthop Relat Res 404: 7–13

    Article  PubMed  Google Scholar 

  29. Sparmann M, Wolke B, Czupalla H et al. (2003) Positioning of total knee arthroplasty with and without navigation support. A prospective, randomized study. J Bone Joint Surg Br 85: 830–835

    PubMed  CAS  Google Scholar 

  30. Stahelin T, Kessler O, Pfirrmann C et al. (2003) Fluoroscopically assisted stress radiography for varus-valgus stability assessment in flexion after total knee arthroplasty. J Arthroplasty 18: 513–515

    Article  PubMed  Google Scholar 

  31. Stiehl JB (2002) World experience with low contact stress mobile-bearing total knee arthroplasty: a literature review. Orthopedics 25(Suppl 2): 213–217

    Google Scholar 

  32. Su YP, Chiu FY, Chen TH (2003) Posterior dislocation after posterior stabilization TKA. J Chin Med Assoc 66: 120–122

    PubMed  Google Scholar 

  33. Thompson NW, Wilson DS, Cran GW et al. (2004) Dislocation of the rotating platform after low contact stress total knee arthroplasty. Clin Orthop Relat 425: 207–211

    Article  Google Scholar 

  34. Tuoheti Y, Watanabe W, Itoi E (2004) Anterior dislocation after total knee arthroplasty: a case report. J Orthop Sci 9: 643–645

    Article  PubMed  Google Scholar 

  35. Vince KG, Abdeen A, Sugimori T (2006) The unstable total knee arthroplasty: causes and cures. J Arthroplasty 21(4 Suppl 1): 44–49

    Article  PubMed  Google Scholar 

  36. Waelchli B, Romero J (2001) Dislocation of the polyethylene inlay due to anterior tibial slope in revision total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 9: 296–298

    Article  PubMed  CAS  Google Scholar 

  37. Wang CJ, Wang HE (1997) Dislocation of total knee arthroplasty. A report of 6 cases with 2 patterns of instability. Acta Orthop Scand 68: 282–285

    Article  PubMed  CAS  Google Scholar 

  38. Ward WG, Haight D, Ritchie P et al. (2003) Dislocation of rotating hinge prostheses. A biomechanical analysis. J Bone Joint Surg Am 85: 448–453

    Article  PubMed  Google Scholar 

  39. Ward WG, Haight D, Ritchie P et al. (2005) Dislocation of rotating hinge prostheses. A report of four cases. J Bone Joint Surg Am 87: 1108–1112

    Article  PubMed  Google Scholar 

  40. Waslewski GL, Marson BM, Benjamin JB (1998) Early, incapacitating instability of posterior cruciate ligament-retaining total knee arthroplasty. J Arthroplasty 13: 763–767

    Article  PubMed  CAS  Google Scholar 

  41. Wazir NN, Shan Y, Mukundala VV, Gunalan R (2007) Dislocation after total knee arthroplasty. Singapore Med J 48: 138–140

    Google Scholar 

  42. Winiarsky R, Barth P, Lotke P (1998) Total knee arthroplasty in morbidly obese patients. J Bone Joint Surg Am 80: 1770–1774

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Der korrespondierende Autor hat einen Beratervertrag mit der Firma Plus Orthopedics. Trotz des möglichen Interessenkonflikts ist der Beitrag unabhängig und produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pietsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietsch, M., Hofmann, S. Von der tibiofemoralen Instabilität zur Luxation in der Knieendoprothetik. Orthopäde 36, 917–927 (2007). https://doi.org/10.1007/s00132-007-1142-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-007-1142-z

Schlüsselwörter

Keywords

Navigation