Skip to main content
Log in

Verlauf der periprothetischen Knochendichte nach Hüfttotalendoprothesenimplantation

Abhängigkeit von Prothesentyp und knöcherner Ausgangssituation

Periprosthetic bone loss after total hip endoprosthesis

Dependence on the type of prosthesis and preoperative bone configuration

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Bei 81 Patienten wurden mittels DEXA die Veränderungen der periprothetischen Knochendichte über einen Zeitraum von 1 Jahr nach Implantation einer zementfreien Hüfttotalendoprothese untersucht. Implantiert wurden 4 Endoprothesentypen (Vision 2000/Duraloc, ALPHA-Fit/ALPHA-Lock Plus, CLS/Allofit, Mayo/Trilogy). Aus den Messungen sollten Hinweise auf den Einfluss des Prothesentyps sowie der knöchernen Ausgangssituation am Femur auf die Reaktion des Knochens gewonnen werden.

Die stärksten Abnahmen der Knochendichte fanden sich bei allen Stieltypen in der Region des Calcar femoris, geringste Veränderungen waren distal sowie medial der Prothesenspitze zu finden. Bei Prothesen mit kürzerem Stiel war die Knochendichteabnahme insgesamt deutlich niedriger als bei Prothesen mit längerem Stiel.

Mit wachsender Prothesengröße wurde bei proximal porös beschichteten Stielen aus Kobaltchrom häufiger eine proximale Atrophie beobachtet, beim Prothesenstiel aus Titanlegierung mit komplett aufgerauter Oberfläche nahm dabei die distale Hypertrophie zu. Ein niedriger präoperativer Kortikalis-Markraum-Index verstärkte bei proximal porös beschichteten Prothesen die proximale Atrophie und führte beim Prothesenstiel mit komplett aufgerauter Oberfläche distal vermehrt zur Hypertrophie ohne proximale Atrophie.

Abstract

The changes of the periprosthetic bone density were examined with DEXA in 81 patients over a period of 1 year after implantation of cementless total hip endoprosthesis. Four types of endoprostheses (Vision 2000/Duraloc, ALPHA-Fit/ALPHA-Lock Plus, CLS/Allofit, Mayo/Trilogy) were implanted. Information on the changes of the periprosthetic bone density depending on the type of the prosthesis and the bony situation at the femur before operation was expected from these measurements.

In all types of stems the strongest reduction of the bone density was found in the region of the calcar femoris, and the smallest changes were found distally and medially of the tip of the prostheses. In the prosthesis with shorter stem the change of the bone density was altogether clearly lower than in prostheses with longer stem.

With increasing size of the prosthesis with proximally porous coating made from cobalt-chrome alloy, proximal atrophy was observed more frequently, whilst in the prosthesis made from titanium alloy with completely rough-blasted surface the distal hypertrophy increased. A low preoperative corticalis-bone marrow index strengthened the proximal atrophy in proximally porously coated prosthesis made from cobalt-chrome alloy and led in the prosthesis with completely rough-blasted surface more often to distal hypertrophy of the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11

Literatur

  1. Adler E, Stuchin SA, Kummer FJ (1992) Stability of press-fit acetabular cups. J Arthroplasty 7: 295–301

    Google Scholar 

  2. Arabmotlagh M, Hennigs T, Rittmeister M (2003) Periprothetischer Knochenumbau am proximalen Femur nach Implantation von Individual- und Standard-Hüftendoprothesen. Z Orthop Ihre Grenzgeb 141:519–525

    Google Scholar 

  3. Barnett E, Nordin (1960) The radiological diagnosis of osteoporosis: a new approach. Clin Radiol 11: 166–174

    CAS  PubMed  Google Scholar 

  4. Bobyn JD, Glassman AH, Goto H, Krygier JJ, Miller JE, Brooks CE (1990) The effect of stem stiffness on femoral bone resorption after canine porous-coated total hip arthroplasty. Clin Orthop 261: 196–213

    Google Scholar 

  5. Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop 274: 79–96

    Google Scholar 

  6. Bryan JM, Sumner DR, Hurwitz DE, Tompkins GS, Andriacchi TP, Galante JO (1996) Altered load history affects periprosthetic bone loss following cementless total hip arthroplasty. J Orthop Res 14: 762–768

    Google Scholar 

  7. Bugbee WD, Culpepper WJ, Engh CA Jr, Engh CA Sr (1997) Long-term clinical consequenses of stress-shielding after total hip arthroplasty without cement. J Bone Joint Surg Am 79: 1007–1012

    CAS  PubMed  Google Scholar 

  8. DeLee JG, Charnley J (1976) Radiological demarcation of cemented sockets in hip replacement. Clin Orthop 121: 20–33

    PubMed  Google Scholar 

  9. Engh CA, Bobyn JD (1988) The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop 231: 7–28

    Google Scholar 

  10. Engh CA, Hooten JP Jr, Zettl-Schaffer KF, Ghaffarpour M, McGovern TF, Macalino GE, Zicat BA (1994) Porous-coated total hip replacement. Clin Orthop 298: 89–96

    Google Scholar 

  11. Engh CA, McGovern TF, Bobyn JD, Harris WH (1992) A quantitative evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. J Bone Joint Surg Am 74: 1009–1020

    CAS  PubMed  Google Scholar 

  12. Gruen TA, McNeice GM, Amstutz HC (1979) „Modes of failure“ of cemented stem-type femoral components. Clin Orthop 141: 17–27

    PubMed  Google Scholar 

  13. Hennigs T, Arabmotlagh M, Schwarz A, Zichner L (2002) Dose-dependent prevention of early periprosthetic bone loss by alendronate. Z Orthop Ihre Grenzgeb 140: 42–47

    Google Scholar 

  14. Huiskes R, Weinans H, van Rietbergen B (1992) The Relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop 274: 124–134

    Google Scholar 

  15. Ingle BM, Hay SM, Bottjer HM, Eastell R (1999) Changes in bone mass and bone turnover following ankle fracture. Osteoporos Int 10: 408–415

    Article  CAS  PubMed  Google Scholar 

  16. Kinner B, Willmann G, Storz S, Kinner J (1999) Erfahrungen mit einer Hydroxylapatit-beschichteten, makroporös strukturierten Hüftendoprothese. Z Orthop Ihre Grenzgeb 137: 114–121

    Google Scholar 

  17. Kröger H, Venesmaa P, Jurvelin J, Miettinen H, Suomalainen O, Alhava E (1998) Bone density at the proximal femur after total hip arthroplasty. Clin Orthop 352: 66–74

    Google Scholar 

  18. Kummer B (1998) Grundlagen der Pauwels‚ Theorie der funktionellen Anpassung des Knochens. Orthopäde 24: 387–393

  19. McAuley JP, Culpepper WJ, Engh CA (1998) Total Hip Arthroplasty. Concerns with extensively porous coated femoral components. Clin Orthop 355: 182–188

    Google Scholar 

  20. McAuley JP, Moore KD, Culpepper WJ, Engh CA (1998) Total hip arthroplasty with porous-coated prostheses fixed without cement in patients who are sixty-five years of age or older. J Bone Joint Surg Am 80: 1648–1655

    Google Scholar 

  21. McAuley JP, Sychterz CJ, Engh CA Sr (2000) Influence of porous coating level on proximal femoral remodeling. Clin Orthop 37: 146–153

    Google Scholar 

  22. Morrey BF (1998) A femoral component for hip replacement. Orthopedics 21: 1011–1012

    Google Scholar 

  23. Morscher E (1994) Prinzipien der Pfannenfixation bei der Hüftarthroplastik mit spezieller Berücksichtigung des Press-Fit Cup. Med Orthop Tech 114: 217–222

    Google Scholar 

  24. Nishii T, Sugano N, Masuhara K, Shibuya T, Ochi T, Tamura S (1997) Longitudinal evaluation of time related bone remodeling after cementless total hip arthroplasty. Clin Orthop 339: 121–131

    Google Scholar 

  25. Ohta H, Kobayashi S, Saito N, Nawata M, Horiuchi H, Takaoka K (2003) Sequential changes in periprosthetic bone mineral density following total hip arthroplasty. J Bone Miner Metab 21: 229–233

    Google Scholar 

  26. Pritchett JW (1995) Femoral bone loss following hip replacement. Clin Orthop 314: 156–161

    Google Scholar 

  27. Reiter A, Gellrich JC, Bachmann J, Braun A (2003) Verlauf der periprothetischen Mineralisationsdichte nach Implantation des zementfreien Bicontact-Schaftes; Einfluss verschiedener Parameter—ein prospektives Follow up über 4 Jahre. Z Orthop Ihre Grenzgeb 141: 283–288

    Google Scholar 

  28. Reiter A, Sabo D, Simank HG, Buchner T, Seidel M, Lukoschek M (1997) Periprothetische Mineralisationsdichte zementfreier Hüftendoprothetik. Z Orthop Ihre Grenzgeb 135: 499–504

    Google Scholar 

  29. Richmond BJ, Eberle RW, Stulberg BN, Deal CL (1991) DEXA-measurement of periprosthetic bone mineral density in total hip arthroplasty. J Bone Miner Res 6: 241–249

    Google Scholar 

  30. Rubash HE, Sinha RK, Shanbhag AS, Kim SY (1998) Pathogenesis of bone loss after total hip arthroplasty. Orthop Clin North Am 29: 173–186

    Google Scholar 

  31. Sabo D, Reiter A, Simank HG, Thomson M, Lukoschek M, Ewerbeck V (1998) Periprosthetic mineralization around cementless total hip endoprosthesis: longitudinal study and cross-sectional study on titanium threaded acetabular cup and cementless Spotorno stem with DEXA. Calcif Tissue Int 62: 177–182

    Google Scholar 

  32. Spittlehouse AJ, Smith TW, Eastell R (1998) Bone loss around 2 different types of hip prostheses. J Arthroplasty 13: 422–427

    Google Scholar 

  33. Spotorno L, Schenk RK, Dietschi C, Romagnoli S, Mumenthaler A (1987) Unsere Erfahrungen mit nicht-zementierten Prothesen. Orthopäde 16: 225–238

    Google Scholar 

  34. Sychterz CJ, Topoleski LD, Sacco M, Engh CA Sr (2001) Effect of femoral stiffness on bone remodeling after uncemented arthroplasty. Clin Orthop 389: 218–227

    Google Scholar 

  35. Theis JC, Beadel G (2003) Changes in proximal femoral bone mineral density around a hydroxyapatite-coated hip joint arthroplasty. J Orthop Surg 11: 48–52

    Google Scholar 

  36. Trevistan C, Bigoni M, Randelli G, Marinoni EG, Peretti G, Ortolani S (1997) Periprosthetic bone density around fully hydroaptite coated femoral stem. Clin Orthop 340: 109–117

    Google Scholar 

  37. Widmer KH, Zurfluh B, Morscher EW (1997) Kontaktfläche und Druckbelastung im Implantat-Knochen-Interface bei Press-Fit-Hüftpfannen im Vergleich zum natürlichen Hüftgelenk. Orthopäde 26: 181–189

    Google Scholar 

  38. Wixson RL, Stulberg SD, Van Flandern GJ, Puri L (1997) Maintenance of proximal bone mass with an uncemented femoral stem analysis with dual-energy x-ray absorptiometry. J Arthroplasty 12: 365–372

    Google Scholar 

  39. Wolf JH (1995) Julius Wolff und sein „Gesetz der Transformation der Knochen“. Orthopäde 24: 378–386

Download references

Interessenkonflikt:

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, A., Richartz, G., Sander, K. et al. Verlauf der periprothetischen Knochendichte nach Hüfttotalendoprothesenimplantation. Orthopäde 34, 334–344 (2005). https://doi.org/10.1007/s00132-005-0773-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-005-0773-1

Schlüsselwörter

Keywords

Navigation