Skip to main content
Log in

Tierexperimentelle Osteitismodelle

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Trotz neuer laborchemischer, radiologischer bzw. nuklearmedizinischer Untersuchungsverfahren und neuer Operationstechniken stellt die Diagnose und Therapie der akuten und insbesondere der chronischen Osteitis auch in der heutigen Zeit ein großes Problem dar. Klinisch orientierte Osteitisforschung ist problematisch, da viele verschiedene Variablen in der Infektionsentstehung und zahlreiche verschiedene therapeutische Optionen bestehen. Die zur gezielten Untersuchung spezifischer Fragestellungen bezüglich Osteitispathogenese und Osteitistherapie notwendige Standardisierung ist in klinischen Patientenkollektiven nicht oder nur unzureichend gegeben. Folglich wurden schon früh tierexperimentelle Modelle etabliert, um unter standardisierten, reproduzierbaren Versuchbedingungen Erkenntnisse über die Osteitispathogenese und die Osteitistherapie zu gewinnen. Im vorliegenden Artikel wird ein Überblick über die bisher in der Osteitisforschung etablierten tierexperimentellen Modelle und den daraus gewonnenen Erkenntnissen gegeben.

Abstract

Despite new approaches in biochemical testing, radiologic and nuclear medicine and advances in surgical techniques, the problem of diagnosis and therapy of acute and chronic osteitis has not been finally solved. Clinical research on osteitis is problematic as there are many variables influencing the inflammatory process and a wide spectrum in therapeutic options exists, hampering research under defined conditions. Consequently, there was an early need for animal models. In vivo experimental settings were established to gain reproducible and reliable results under standardized conditions on the pathogenesis and therapy of osteitis. In this article, an overview of the hitherto established experimental animal models and the results of osteitis research on these models is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Ali SA, Cesani F, Nusynowitz ML, Shirtliff ME, Mader JT (1999) Skeletal scintigraphy with technetium-99m-tetraphenyl porphyrin sulfonate for the detection and determination of osteomyelitis in an animal model. J Nucl Med 38: 1999–2002

    Google Scholar 

  2. Andriole VT, Nagel DA, Southwick WO (1973) A paradigm for human chronic osteomyelitis. J Bone Joint Surg 55A: 1511–1515

    Google Scholar 

  3. An YH, Stuart GW, McDowell SJ, McDaniel SE, Kang Q, Friedman RJ (1996) Prevention of bacterial adherence to implant surfaces with a cross-linked albumin coating. J Orthop Res 14: 846–849

    CAS  PubMed  Google Scholar 

  4. Arens S, Eijer H, Schlegel U, Printzen G, Perren SM, Hansis M (1999) Influence of the design for fixation implants on local infection. An experimental study of DC-Plates vs. Point-Contact-Fixators in rabbits. J Orthop Trauma 13: 470–476

    Article  CAS  PubMed  Google Scholar 

  5. Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M (1996) Influence of the materials for fracture fixation implants on the development of local infection. An experimental study of steel vs. titanium DC-Plates in rabbits. J Bone Joint Surg 78-B: 647–651

  6. Belmatoug N, Cremieux AC, Volk A (1996) A new model of experimental prosthesis joint infection due to methicillin-resistant Staphylococcus aureus: a microbiologic, histopathologic, and magnetic resonance imaging characterization. J Infect Dis 174: 414–417

    CAS  PubMed  Google Scholar 

  7. Blomgren G, Lindgren U (1981) Late hematogenous infections in total joint replacement: studies of gentamicin and bone cement in the rabbit. Clin Orthop 155: 244–248

    PubMed  Google Scholar 

  8. Buret A, Ward KH, Olson ME, Costerton JW (1991) An in vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. J Biomed Mater Res 25: 865–874

    CAS  PubMed  Google Scholar 

  9. Chada HS, Fitzgerald RH Jr, Wiater P, Sud S, Nasser S, Wooley PH (1999) Experimental acute hematogenous osteomyelitis in mice. I. Histopathological and immunological findings. J Orthop Res 17: 376–381

    PubMed  Google Scholar 

  10. Christensen GD, Simpson WA, Bisno AL, Beacheyand EH (1983) Experimental infections in mice challenged with slime-producing Staphylococcus epidermidis. Infect Immun 40: 407–410

    CAS  PubMed  Google Scholar 

  11. Costerton JW, Lambe DW, Mayberry-Carson KJ, Tober-Meyer B (1987) Cell wall alterations in staphylococcal growing in situ in experimental osteomyelitis. Can J Microbiol 33: 142–150

    CAS  PubMed  Google Scholar 

  12. Cremieux AC, Saleh Mghir A, Bleton (1996) Efficacy of sparfloxacin and autoradiographic diffusion pattern of [14C] sparfloxacin in experimental Staphylococcus aureus joint prosthesis infection. Antimicrob Agents Chemother 40: 2111–2116

    CAS  PubMed  Google Scholar 

  13. Dams BTM, Nijhof MW, Boerman OC et al. (2000) Scintigraphic evaluation of experimental chronic osteomyelitis. J Nucl Med 41: 896–902

    CAS  PubMed  Google Scholar 

  14. Dekel S, Francis MJO (1981) The treatment of osteomyelitis of the tibia with sodium salicylate: an experimental study in rabits. J Bone Joint Surg BR 63: 178–184

    Google Scholar 

  15. Deysyine M, Rosario E, Isenberg HD (1976) Acute hematogenous osteomyelitis: an experimental model: Surgery 79: 97–99

    Google Scholar 

  16. Emslie KR, Nade SML (1983) Acute haematogenous staphylococcal osteomyelitis: a description of the natural history in an avian model. Am J Pathol 110: 333–345

    CAS  PubMed  Google Scholar 

  17. Evans RP, Nelson CL, Harrison BH (1993) The effect of wound environment on the incidence of acute osteomyelitis. Clin Orthop 286: 289–297

    PubMed  Google Scholar 

  18. Fitzgerald RH (1983) Experimental osteomyelitis: description of a canine model and the role of a depot administration of antibiotics in the prevention and treatment of sepsis. J Bone Joint Surg Br 65: 371–380

    Google Scholar 

  19. Gerhart TN, Roux RD, Hanff PA, Horowitz GL, Renshaw AA, Hayes WC (1993) Antibiotic-loaded biodegradeble bone cement for prophylaxis and treatment of experimental osteomyelitis in rats. J Orthop Res 11: 250–255

    CAS  PubMed  Google Scholar 

  20. Gracia E, Lacleriga A, Monzon M, Leiva J, Oteiza C, Amorena B (1998) Application of a rat osteomyelitis model to compare in vivo and in vitro the antibiotic efficacy against bacteria with high capacity to form biofilms. J Surg Res 79: 146–153

    Article  CAS  PubMed  Google Scholar 

  21. Haldeman KO (1934) Acute osteomyelitis. A clinical and experimental study. Surg Gynecol Obstet 59: 25

    Google Scholar 

  22. Hauke C, Schlegel U, Melcher GA, Printzen G, Perren SM (1996) Einfluss des Implantatmaterials auf die lokale Infektresistenz bei der Tibiamarknagelung. Eine experimentelle Vergleichsstudie am Kaninchen mit Marknägeln aus rostfreiem Stahl und Reintitan. Swiss Surg 1: 45

    Google Scholar 

  23. Hienz S, Sakamoto H, Flock JL (1995) Development and characterization of a new model of haematogenous osteomyelitis in the rat. J Infect Dis 171: 1230–1236

    CAS  PubMed  Google Scholar 

  24. Isiklar ZU, Landon GC, Daruiche R, Fernau R, Musher D (1993) Penetration of vancomycin into biofilm: An in vivo orthopedic implant infection model. Trans Orthop Res Soc 18: 458–462

    Google Scholar 

  25. Johansson A, Svensson O, Blomgren G, Eliasson G, Nord CE (1991) Anaerobic osteomyelitis: a new experimental rabbit model. Clin Orthop 265: 297–301

    PubMed  Google Scholar 

  26. Kälicke T, Schlegel U, Printzen G, Schneider E, Muhr G, Arens S (2003) Influence of a standardized closed soft tissue trauma on resistance to local infection. An experimental study in rats. J Orthop Res 21: 373–378

    Article  PubMed  Google Scholar 

  27. Kieswetter K, Merritt K, Myers R (1992) Effects of infection on hydroxyapatite. Trans Soc Biomater 16: 220

    Google Scholar 

  28. Lexer E (1894) Zur experimentellen Erzeugung osteomyelitischer Herde. Arch Klein Chir 48: 181–200

    Google Scholar 

  29. Littlewood-Evans AJ, Hattenberger MR, Luscher C, Pataki A, Zak O, O Reilly T (1997) Local expression of tumor necrosis factor alpha in an experimental model of acute osteomyelitis in rats. Infect Immun 65: 3438–3443

    CAS  PubMed  Google Scholar 

  30. Lucke M, Schmidmaier G, Schiller R, Sadoni S, Wildemann B, Raschke M (2001) Untersuchung einer gentamicinhaltigen biodegradierbaren Beschichtung von Titanimplantaten am Tiermodell der Ratte. Hefte Unfallchirurg“ 283: 27–28

    Google Scholar 

  31. Mader JT, Adams K (1989) Comparative evaluation of daptomycin (LY146032) and vancomycin in the treatment of experimental methicillin-resistant Staphylococcus aureus osteomyelitis in rabbits. Antimicrob Agents Chemother 33: 689–692

    CAS  PubMed  Google Scholar 

  32. Mader JT, Brown GL, Guckian JC, Wells CH, Reinarz JA (1980) A mechanism for the amelioration by hyperbaric oxygen of experimental staphylococcal osteomyelitis in rabbits. J Infect Dis 142: 915–922

    CAS  PubMed  Google Scholar 

  33. Mayberry-Carson KJ, Tober-Meyer B, Lambe DW Jr, Costerton JW (1986) An electron microscopic study of the effect of clindamycin therapy on bacterial adherence and glycocalyx formation in experimental Staphylococcus aureus osteomyelitis. Microbios 48: 189–206

    CAS  PubMed  Google Scholar 

  34. Melcher GA, Claudi B, Schlegel U, Perren SM, Printzen G, Munzinger J (1994) Influence of type of medullary nail on the development of local infection. An experimental study of solid and slotted nails in rabbits. J Bone Joint Surg 76B: 955–959

    Google Scholar 

  35. Merritt K, Brown SA, Payer JH, Ryerson DH (1991) Influence of bacteria on corrosion of metallic biomaterials. Trans Soc Biomater 14: 106

    Google Scholar 

  36. Müller JT, Zielinski CC, Passl R, Eibl MM (1984) Divergent patterns of leucocyte locomotion in experimental post-traumatic osteomyelitis. Br J Exp Pathol 65: 299–303

    PubMed  Google Scholar 

  37. Nakamoto DA, Haaga JR, Bove P, Merritt K, Rowland DY (1995) Use of fibrinolytic agents to coat wire implants to decrease infection. An animal model. Invest Radiol 30: 341–344

    CAS  PubMed  Google Scholar 

  38. Nelson DR, Buxton TB, Luu ONL, Rissing JP (1990) An antibiotic resistant experimental model of pseudomonas osteomyelitis. Infection 18: 246–249

    CAS  PubMed  Google Scholar 

  39. Nijhof MW, Fleer A, Hardus K, Vogely HC, Schouls LM, Verbout AJ, Dhert WJ (2001) Tobramycin-containing bone cement and systemic cefazolin in a one-stage revision. Treatment of infection in a rabbit model. J Biomed Mater Res 58: 747–753

    Article  CAS  PubMed  Google Scholar 

  40. Norden CW (1970) Experimental osteomyelitis. A description of the model. J Infect Dis 122: 410–418

    CAS  PubMed  Google Scholar 

  41. Passl R, Müler C, Zienlinski C, Eibl MM (1984) A model of experimental posttraumatic osteomyelitis in guinea pigs. J Trauma 24: 323–326

    CAS  PubMed  Google Scholar 

  42. Petty W, Spanier S, Shuster JJ, Silverthorne C (1985) The influence of skeletal implants on incidence of infection: experiments in a canine model. J Bone Joint Surg Am 37: 1236–1244

    Google Scholar 

  43. Riegels-Nielsen P, Espersen F, Holmich LR, Frimodt-Moller N (1995) Collagen with gentamicin for prophylaxis of postoperative infection: Staphylococcus aureus osteomyelitis studied in rabbits. Acta Orthop Scand 66: 69–72

    CAS  PubMed  Google Scholar 

  44. Rissing JP, Buxton TB, Weinstein RS, Shockley RK (1985) Model of experimental chronic osteomyelitis in rats. Infect Immun 47: 581–586

    CAS  PubMed  Google Scholar 

  45. Rissing JP (1990) Animal models of osteomyelitis: knowledg, hypothesis, and speculation. Infect Dis Clin North Am 4: 377–390

    Google Scholar 

  46. Rodeheaver GT, Rukstalis D, Bono M, Bellamy W (1983) A new model of bone infection used to evaluate the efficacy of antibiotic-impregnated polymethymetacrylate cement. Clin Orthop 178: 303–311

    CAS  PubMed  Google Scholar 

  47. Rodet A (1884) Physiologie pathologique—Etude experimentale sur l’osteomyelite infectieuse. Comptes Rendus de l’Academie de Sciences 99: 4569

    Google Scholar 

  48. Rouse MS, Tallan BM, Steckelberg JM, Wilson WR, Henry NK (1989) A novel model of S. epidermidis experimental foreign body osteomyelitis: treatment with ciprofloxacin or vancomycin. In: Programm and abstracts of the 34th Interscienic Conference on Antimicrobial Agents and Chemotherapy (Houston). American Society for Microbiology, Washington/DC, p 325

  49. Saleh MA, Cremieux AC, Bleton R (1996) Autoradiographic pattern of 14C-teicoplanin and efficacy of teicoplanin in an experimental staphylococcus infection. In: Programm and abstracts of the 36th Interscienic Conference on Antimicrobial Agents and Chemotherapy (New Orleans). American Society for Microbiology, Washington/DC, p 8

  50. Sanzen L, Linder L (1995) Infection adjacent to titanium and bone cement implants: an experimental study in rabbits. Biomaterials 16: 1273–1277

    Article  CAS  PubMed  Google Scholar 

  51. Sasaki S, Ishii Y (1999) Apatite cement containing antibiotics: efficacy in treating experimental osteomyelitis. J Orthop Sci 4: 361–369

    Article  CAS  PubMed  Google Scholar 

  52. Scheman L, Janota M, Lewin P (1941) The production of experimental osteomyelitis: prelimary report. JAMA 117: 1525–1529

    Google Scholar 

  53. Schurman DJ, Trindade C, Hirshman HP, Moser K, Kayiyama G, Stevens P (1978) Antibiotic-acrylic bone cement composites: studies of gentamicin and palacos. J Bone Joint Surg 60: 978–984

    CAS  PubMed  Google Scholar 

  54. Shirtliff ME, Calhoun JH, Mader JT (2002) Gatifloxacin efficacy in treatment of experimental methicillin-sensitive Staphylococcus aureus-induced osteomyelitis in rabbits. Antimicrob Agents Chemother 46: 231–233

    Article  CAS  PubMed  Google Scholar 

  55. Southwood RT, Rice JL, McDonald PJ, Hakendorf PH, Rozenbilds MA (1985) Infection in experimental hip arthroplasties. J Bone Joint Surg Br 37: 229–231

    Google Scholar 

  56. Verheyen CCPM, Dhert WJA, Petit PLC, Rozing PM, de Groot K (1993) Study on the integrity of a hydroxyapatite coating when chalenged with staphylocci. J Biomed Mater Res 27: 775–781

    CAS  PubMed  Google Scholar 

  57. Worlock P, Slack R, Harvey L, Mawhinney R (1994) The prevention of infection in open fractures: an experimental study of the effect of fracture stability. Injury 25: 31–38

    CAS  PubMed  Google Scholar 

  58. Yoon KS, Fitzgerald RH Jr, Sud S, Song Z, Wooley PH (1999) Experimental acute hematogenous osteomyelitis in mice. II. Influence of Staphylococcus aureus infection on T-cell immunity. J Orthop Res 17: 382–391

    CAS  PubMed  Google Scholar 

  59. Zak O, Zak F, Rich R, Tosch W, Kradolfer F, Scheld WM (1982) Experimental staphylococcal osteomyelitis in rats: therapy with rifampicin and cloxacillin alone or in combination. In: Perity P, Grassi GG, eds. Current chemotherapy and immunotherapy. American Society for Microbiology, Washington/DC, pp 973–974

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kälicke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kälicke, T., Schlegel, U., Kraft, C. et al. Tierexperimentelle Osteitismodelle. Orthopäde 33, 260–266 (2004). https://doi.org/10.1007/s00132-003-0608-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-003-0608-x

Schlüsselwörter

Keywords

Navigation