Skip to main content
Log in

Dual-source-Computertomographie des Herzens

Bildqualität und Funktionsanalyse bei verbesserter zeitlicher Auflösung

Dual-source cardiac CT imaging with improved temporal resolution

Impact on image quality and analysis of left ventricular function

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Seit kurzem stehen Dual-source-Computertomographie-Systeme (DSCT) zur Verfügung, die eine höhere zeitliche Auflösung als herkömmliche Single-source-Systeme besitzen. Ziele unserer Untersuchungen waren die Korrelation der Bildqualität mit der Herzfrequenz und die Evaluation linksventrikulärer Funktionsparameter mit der DSCT im Vergleich zur Magnetresonanztomographie (MRT).

Bei 21 Patienten (mittleres Alter 62±8 Jahre; 15 männlich, 6 weiblich) wurde an einem Dual-source-CT (Somatom Defintion, Siemens Medical Solutions, Forchheim) eine CT-Angiographie der Koronararterien durchgeführt. Die Bildqualität der Darstellung der Koronararterien, Herzklappen sowie des linksventrikulären Myokards wurde anhand einer 3-Punkte-Skala bewertet. Bei 10 Patienten dieses Kollektivs wurde unter Verwendung einer SSFP- (Steady-state-free-precession-)Sequenz eine Funktions-MRT des Herzens votgenommen. Die linksventrikuläre Ejektionsfraktion (LV-EF), das endsystolische Volumen (ESV) und das enddiastolische Volumen (EDV) wurden in den DSCT- und den MRT-Datensätzen bestimmt.

Die Evaluation der Bildqualität ergab selbst für Patienten mit hoher Herzfrequenz eine diagnostische Bildqualität mit 1,42±0,49 bei Beurteilung der Koronararterien. Die Analyse der linksventrikulären Funktionsparameter am DSCT im Vergleich mit den MRT-Datensätzen ergab eine gute Korrelation (LV-EF: r=0,75; p=0,01; ESV: r=0,72; p=0,019; EDV: r=0,71; p=0,02).

Das Dual-source-CT-System bietet auch bei Patienten mit hohen Herzfrequenzen eine robuste und reproduzierbare Abbildungsqualität der Koronararterien und Herzklappen sowie des Myokards und erlaubt eine ausreichend genaue Bestimmung der linksventrikulären Funktionsparameter.

Abstract

In a newly developed dual-source computed tomography system (DSCT) the relation of heart rate and image quality and the possible advantages of the system’s superior temporal resolution in the evaluation of left ventricular parameters as compared to results of cardiac magnetic resonance imaging (MRI) were assessed.

Coronary CT angiography was performed using a DSCT (Somatom Defintion, Siemens Medical Solutions, Forchheim, Germany) in 21 patients (mean age 62±8; 15 male, 6 female). Image quality of the coronary arteries, the heart valves, and the left ventricular myocardium was assessed using a three-point grading scale. Ten of these patients also underwent cardiac MRI for the assessment of left ventricular function, using a SSFP (steady-state free precession) sequence. Left ventricular ejection fractions (LV-EF), the end-systolic volumes (ESV), and the end-diastolic volumes (EDV) were measured employing MRI and DSCT datasets.

The image quality ratings for the coronary arteries at the optimal reconstruction interval were diagnostic even in patients with high heart rates (1.42±0.49). Analysis of global LV function using DSCT quantified from CTA datasets showed a good correlation with results of cardiac MRI [EF: r=0.75 (p=0.01); ESV: r=0.72 (p=0.19); EDV: r=0.71 (p=0.02)].

The dual-source CT system offers robust image quality of the coronary arteries, independent of the heart rate, and provides combined diagnostic imaging of coronary arteries, the heart valves, the myocardium, and the global left ventricular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Achenbach S, Giesler T, Ropers D et al. (2003) Comparison of image quality in contrast-enhanced coronary-artery visualization by electron beam tomography and retrospectively electrocardiogram-gated multislice spiral computed tomography. Invest Radiol 38: 119–128

    Article  PubMed  Google Scholar 

  2. Achenbach S, Ropers D, Kuettner A et al. (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography – initial experience. Eur J Radiol 57: 331–335

    Article  PubMed  Google Scholar 

  3. Boehm T, Alkadhi H, Roffi M et al. (2004) Time-effectiveness, observer-dependence, and accuracy of measurements of left ventricular ejection fraction using 4-channel MDCT. Rofo 176: 529–537

    PubMed  Google Scholar 

  4. Dewey M, Laule M, Krug L et al. (2004) Multisegment and halfscan reconstruction of 16-slice computed tomography for detection of coronary artery stenoses. Invest Radiol 39: 223–229

    Article  PubMed  Google Scholar 

  5. Fischbach R, Juergens KU, Ozgun M et al. (2006) Assessment of regional left ventricular function with multidetector-row computed tomography versus magnetic resonance imaging. Eur Radiol Sep 29, Epub ahead of print

  6. Flohr TG, McCollough CH, Bruder H et al. (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16: 256–268

    Article  PubMed  Google Scholar 

  7. Giesler T, Baum U, Ropers D et al. (2002) Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detection. AJR Am J Roentgenol 179: 911–916

    PubMed  Google Scholar 

  8. Henneman MM, Schuijf JD, Jukema JW et al. (2006) Assessment of global and regional left ventricular function and volumes with 64-slice MSCT: a comparison with 2D echocardiography. J Nucl Cardiol 13: 480–487

    Article  PubMed  Google Scholar 

  9. Hoffmann MH, Shi H, Manzke R et al. (2005) Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 234: 86–97

    PubMed  Google Scholar 

  10. Hong C, Becker CR, Huber A et al. (2001) ECG-gated, retrospectively reconstructed multidetector-row CT coronary angiography: effect of varying trigger delay on image quality. Radiology 220: 712–717

    PubMed  Google Scholar 

  11. Jakobs TF, Becker CR, Ohnesorge B et al. (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12: 1081–1086

    Article  PubMed  Google Scholar 

  12. Johnson TR, Nikolaou K, Wintersperger BJ et al. (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16: 1409–1415

    Article  PubMed  Google Scholar 

  13. Johnson TRC, Nikolaou K, Wintersperger BJ et al. (2007) ECG gated 64 slice CT angiography for the differential diagnosis of acute chest pain. AJR Am J Roentgenol 188: 10.2214/AJR.05.1153

    Article  Google Scholar 

  14. Juergens KU, Grude M, Fallenberg EM et al. (2002) Using ECG-gated multidetector CT to evaluate global left ventricular myocardial function in patients with coronary artery disease. AJR Am J Roentgenol 179: 1545–1550

    PubMed  Google Scholar 

  15. Knez A, Becker C, Ohnesorge B et al. (2000) Noninvasive detection of coronary artery stenosis by multislice helical computed tomography. Circulation 101: 221–222

    PubMed  Google Scholar 

  16. Leber AW, Knez A, Becker A et al. (2004) Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol 43: 1241–1247

    Article  PubMed  Google Scholar 

  17. Leber AW, Knez A, Ziegler F et al. (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46: 147–154

    Article  PubMed  Google Scholar 

  18. Mahnken AH, Koos R, Katoh M et al. (2005) Sixteen-slice spiral CT versus MR imaging for the assessment of left ventricular function in acute myocardial infarction. Eur Radiol 15: 714–720

    Article  PubMed  Google Scholar 

  19. Mahnken AH, Muhlenbruch G, Gunther RW, Wildberger JE (2006) Cardiac CT: coronary arteries and beyond. Eur Radiol Oct 26, Epub ahead of print

    Google Scholar 

  20. Mollet NR, Cademartiri F, van Mieghem CA et al. (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112: 2318–2323

    Article  PubMed  Google Scholar 

  21. Nieman K, Oudkerk M, Rensing BJ et al. (2001) Coronary angiography with multi-slice computed tomography. Lancet 357: 599–603

    Article  PubMed  Google Scholar 

  22. Nikolaou K, Knez A, Rist C et al. (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187: 111–117

    Article  PubMed  Google Scholar 

  23. Raman SV, Shah M, McCarthy B et al. (2006) Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J 151: 736–744

    Article  PubMed  Google Scholar 

  24. Rist C, Nikolaou K, Wintersperger BJ et al. (2004) Indications for multislice CT angiography of coronary arteries. Radiologe 44: 121–129

    Article  PubMed  Google Scholar 

  25. Rist C, von Ziegler F, Nikolaou K et al. (2006) Assessment of coronary artery stent patency and restenosis using 64-slice computed tomography. Acad Radiol 13: 1465–1473

    Article  PubMed  Google Scholar 

  26. Rominger MB, Bachmann GF, Pabst W et al. (2000) Left ventricular heart volume determination with fast MRI in breath holding technique: how different are quantitative heart catheter, quantitative MRI and visual echocardiography? Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 172: 23–32

    Article  PubMed  Google Scholar 

  27. Scheffel H, Alkadhi H, Plass A et al. (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16: 2739–2747

    Article  PubMed  Google Scholar 

  28. Schlosser T, Pagonidis K, Herborn CU et al. (2005) Assessment of left ventricular parameters using 16-MDCT and new software for endocardial and epicardial border delineation. AJR Am J Roentgenol 184: 765–773

    PubMed  Google Scholar 

  29. Schroeder S, Kopp AF, Kuettner A et al. (2002) Influence of heart rate on vessel visibility in noninvasive coronary angiography using new multislice computed tomography: experience in 94 patients. Clin Imaging 26: 106–111

    Article  PubMed  Google Scholar 

  30. White HD, Norris RM, Brown MA et al. (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76: 44–51

    PubMed  Google Scholar 

  31. Willmann JK, Weishaupt D, Lachat M et al. (2002) Electrocardiographically gated multi-detector row CT for assessment of valvular morphology and calcification in aortic stenosis. Radiology 225: 120–128

    PubMed  Google Scholar 

  32. Wintersperger BJ, Nikolaou K, von Ziegler F et al. (2006) Image quality, motion artifacts, and reconstruction timing of 64-slice coronary computed tomography angiography with 0.33-second rotation speed. Invest Radiol 41: 436–442

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenskonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt wird oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Rist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rist, C., Johnson, T., Becker, A. et al. Dual-source-Computertomographie des Herzens. Radiologe 47, 287–294 (2007). https://doi.org/10.1007/s00117-007-1479-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-007-1479-7

Schlüsselwörter

Keywords

Navigation