Skip to main content
Log in

Computerassistierte Entscheidungsfindung beim Traumapatienten

Computer-assisted decision-making for trauma patients

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Bei der Behandlung von Schockraumpatienten müssen in komplexen Situationen laufend und unter Zeitdruck zahlreiche kritische Entscheidungen getroffen werden. Auch erfahrene Teams machen hierbei häufig Fehler. Computerassistierte Entscheidungshilfen können basierend auf kontinuierlich eingespielten Informationen über den Zustand des Patienten anhand errechneter Wahrscheinlichkeiten weitere Behandlungsschritte vorschlagen. Die vorliegende Übersichtsarbeit fasst den aktuellen Stand der Literatur zur computerassistierten Entscheidungsfindung beim Traumapatienten zusammen.

Fragestellung

Literaturübersicht zu den vorhandenen Konzepten und Anwendungen der computerassistierten Entscheidungsfindung beim Traumapatienten.

Methodik

Narrativer Übersichtsartikel basierend auf einer Recherche der relevanten deutsch- und englischsprachigen Literatur der letzten 10 Jahre.

Ergebnisse

Es sind bereits einige gut funktionierende computerassistierte Entscheidungshilfen im Bereich der Traumaversorgung implementiert. Diverse Studien konnten zeigen, dass computerbasierte Entscheidungen im präklinischen Setting, im Schockraum und auf der traumatologischen Intensivstation das Behandlungsergebnis verbessern können. Zur weiteren Validierung und Implementierung müssen informationstechnische Barrieren behoben, die existierenden Systeme an die Datenschutzgesetze angeglichen und multizentrische Studien zur größeren Datenerhebung generiert werden.

Schlussfolgerung

Computerassistierte Entscheidungshilfen können helfen, die Versorgung von Traumapatienten zu verbessern. Für eine flächendeckende Anwendung müssen jedoch zuvor technische und legislative Barrieren überwunden werden.

Abstract

Background

In the management of trauma patients in the resuscitation room many time-pressured and critical decisions must continuously be made in complex situations. Even experienced teams frequently make errors in this context. Computer-assisted decision-making systems can predict critical situations based on patient data continuously acquired online. Based on the calculated predictions these systems can suggest the next steps in managing the patient. This review summarizes the current literature on computer-assisted decision-making in the management of trauma patients.

Objective

A literature review summarizing existing concepts and applications of computer-assisted decision-making support for the management of trauma patients.

Methods

Narrative review article based on an analysis of literature in the German and English languages from the last 10 years.

Results

There exist numerous computer-assisted decision-making systems in the field of trauma care. Several studies could show that computer-assisted decision-making can improve the outcome in the preclinical setting, the resuscitation room and in the intensive care unit. For further validation and implementation of these systems, information technological barriers have to be overcome, existing systems need to be adapted to current data protection regulations and large multicenter studies are necessary.

Conclusion

Computer-assisted decision-making can help to improve the management of trauma patients; however, before a ubiquitous implementation a number of technological and legislative barriers have to be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Anazodo AN, Murthi SB, Frank MK, Hu PF, Hartsky L, Imle PC, Stephens CT, Menaker J, Miller C, Dinardo T, Pasley J, Mackenzie CF (2015) Assessing trauma care provider judgement in the prediction of need for life-saving interventions. Injury 46(5):791–797

    Article  Google Scholar 

  2. Arkes HR, Shaffer VA, Medow MA (2007) Patients derogate physicians who use a computer-assisted diagnostic aid. Med Decis Making 27(2):189–202

    Article  Google Scholar 

  3. Beda A, Carvalho AR, Carvalho NC, Hammermüller S, Amato MBP, Muders T, Gittel C, Noreikat K, Wrigge H, Reske AW (2017) Mapping regional differences of local pressure-volume curves with electrical impedance Tomography. Crit Care Med 45(4):679–686

    Article  Google Scholar 

  4. Berchialla P, Gangemi EN, Foltran F, Haxhiaj A, Buja A, Lazzarato F, Stella M, Gregori D (2014) Predicting severity of pathological scarring due to burn injuries. A clinical decision making tool using Bayesian networks. Int Wound J 11(3):246–252

    Article  Google Scholar 

  5. Bibault J‑E, Giraud P, Durdux C, Taieb J, Berger A, Coriat R, Chaussade S, Dousset B, Nordlinger B, Burgun A (2018) Deep Learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep 8(1):12611

    Article  Google Scholar 

  6. Burke JP, Pestotnik SL (1999) Antibiotic use and microbial resistance in intensive care units. Impact of computer-assisted decision support. J Chemother 11(6):530–535

    Article  CAS  Google Scholar 

  7. Carron P‑N, Taffe P, Ribordy V, Schoettker P, Fishman D, Yersin B (2011) Accuracy of prehospital triage of trauma patients by emergency physicians. A retrospective study in western Switzerland. Eur J Emerg Med 18(2):86–93

    Article  Google Scholar 

  8. Chen L, McKenna TM, Reisner AT, Gribok A, Reifman J (2008) Decision tool for the early diagnosis of trauma patient hypovolemia. J Biomed Inform 41(3):469–478. https://doi.org/10.1016/j.jbi.2007.12.002

    Article  PubMed  Google Scholar 

  9. Clarke JR, Webber BL, Gertner A, Kaye J, Rymon R (1994) On-line decision support for emergency trauma management. Proc Annu Symp Comput Appl Med Care 1994:1028

  10. Clarke JR, Spejewski B, Gertner AS, Webber BL, Hayward CZ, Santora TA, Wagner DK, Baker CC, Champion HR, Fabian TC, Lewis FR, Moore EE, Weigelt JA, Eastman AB, Blank-Reid C (2000) An objective analysis of process errors in trauma resuscitations. Acad Emerg Med 7(11):1303–1310

    Article  CAS  Google Scholar 

  11. Clarke JR, Hayward CZ, Santora TA, Wagner DK, Webber BL (2002) Computer-generated trauma management plans. Comparison with actual care. World J Surg 26(5):536–538

    Article  Google Scholar 

  12. Convertino VA, Moulton SL, Grudic GZ, Rickards CA, Hinojosa-Laborde C, Gerhardt RT, Blackbourne LH, Ryan KL (2011) Use of advanced machine-learning techniques for noninvasive monitoring of hemorrhage. J Trauma 71(1 Suppl):S25–S32

    Article  Google Scholar 

  13. Dami F, Golay C, Pasquier M, Fuchs V, Carron P‑N, Hugli O (2015) Prehospital triage accuracy in a criteria based dispatch centre. BMC Emerg Med 15:32

    Article  Google Scholar 

  14. Deutsche Gesellschaft für Unfallchirurgie (2017) S3-Leitlinie Polytrauma/Schwerverletzten-Versorgung

    Google Scholar 

  15. Fitzgerald M, Cameron P, Mackenzie C, Farrow N, Scicluna P, Gocentas R, Bystrzycki A, Lee G, O’Reilly G, Andrianopoulos N, Dziukas L, Cooper DJ, Silvers A, Mori A, Murray A, Smith S, Xiao Y, Stub D, McDermott FT, Rosenfeld JV (2011) Trauma resuscitation errors and computer-assisted decision support. Arch Surg 146(2):218–225

    Article  Google Scholar 

  16. Fritz J, Gaissmaier C, Volkmann R, Höntzsch D, Greschner H (1999) Rechnergestützte Leistungsdokumentation. Auswirkungen in Orthopädie und Unfallchirurgie auf Budget und Entgeltformen. Unfallchirurg 102(2):92–97

    Article  CAS  Google Scholar 

  17. Mackenzie CF, Hu P, Sen A, Dutton R, Seebode S, Floccare D, Scalea T (2008) Automatic pre-hospital vital signs waveform and trend data capture fills quality management, triage and outcome prediction gaps. AMIA Annu Symp Proc 2008:318–322

    PubMed Central  Google Scholar 

  18. Mina MJ, Winkler AM, Dente CJ (2013) Let technology do the work. Improving prediction of massive transfusion with the aid of a smartphone application. J Trauma Acute Care Surg 75(4):669–675

    Article  Google Scholar 

  19. Nachtigall I, Tafelski S, Deja M, Halle E, Grebe MC, Tamarkin A, Rothbart A, Uhrig A, Meyer E, Musial-Bright L, Wernecke KD, Spies C (2014) Long-term effect of computer-assisted decision support for antibiotic treatment in critically ill patients. A prospective ‘before/after’ cohort study. BMJ Open 4(12):e5370

    Article  CAS  Google Scholar 

  20. Navarro S, Montmany S, Rebasa P, Colilles C, Pallisera A (2014) Impact of ATLS training on preventable and potentially preventable deaths. World J Surg 38(9):2273–2278

    Article  Google Scholar 

  21. Ogunyemi OI, Clarke JR, Ash N, Webber BL (2002) Combining geometric and probabilistic reasoning for computer-based penetrating-trauma assessment. J Am Med Inform Assoc 9(3):273–282

    Article  Google Scholar 

  22. Osterhoff G (2017) Nurse gender and its influence on emergency department triage-upsides and downsides of registry data. Pain 158(3):367–368

    Article  Google Scholar 

  23. Rughani AI, Dumont TM, Lu Z, Bongard J, Horgan MA, Penar PL, Tranmer BI (2010) Use of an artificial neural network to predict head injury outcome. J Neurosurg 113(3):585–590

    Article  Google Scholar 

  24. Salinas J, Chung KK, Mann EA, Cancio LC, Kramer GC, Serio-Melvin ML, Renz EM, Wade CE, Wolf SE (2011) Computerized decision support system improves fluid resuscitation following severe burns. An original study. Crit Care Med 39(9):2031–2038

    Article  Google Scholar 

  25. Schuurman N, Leight M, Berube M (2008) A web-based graphical user interface for evidence-based decision making for health care allocations in rural areas. Int J Health Geogr 7:49

    Article  Google Scholar 

  26. Sintchenko V, Iredell JR, Gilbert GL, Coiera E (2005) Handheld computer-based decision support reduces patient length of stay and antibiotic prescribing in critical care. J Am Med Inform Assoc 12(4):398–402

    Article  Google Scholar 

  27. Stengel D, Bauwens K, Walter M, Köpfer T, Ekkernkamp A (2004) Comparison of handheld computer-assisted and conventional paper chart documentation of medical records. A randomized, controlled trial. J Bone Joint Surg Am 86-A(3):553–560

    Article  Google Scholar 

  28. Walkinshaw E (2011) iPhone app an aid in diagnosing concussions. CMAJ 183(14):E1047–E1048

    Article  Google Scholar 

  29. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N (2017) Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE 12(4):e174944

    Article  Google Scholar 

  30. Wong KH, Lob S‑C, Lin C‑F, Lasser B, Mun SK (2009) Imaging components for a robotic casualty evaluation system. Conf Proc IEEE Eng Med Biol Soc. https://doi.org/10.1109/IEMBS.2009.5334416

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Georg Osterhoff.

Ethics declarations

Interessenkonflikt

G. Osterhoff, D. Pförringer, J. Scherer, C. Juhra, S. Maerdian und D.A. Back geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

W. Mutschler, München

H. Polzer, München

B. Ockert, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osterhoff, G., Pförringer, D., Scherer, J. et al. Computerassistierte Entscheidungsfindung beim Traumapatienten. Unfallchirurg 123, 199–205 (2020). https://doi.org/10.1007/s00113-019-0676-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-019-0676-y

Schlüsselwörter

Keywords

Navigation