Skip to main content
Log in

3D-Druck in der unfallchirurgischen Fort- und Weiterbildung

Möglichkeiten und Anwendungsbereiche

3D printing in orthopedic and trauma surgery education and training

Possibilities and fields of application

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Die 3D-Druck-Technologie ermöglicht es, ausgehend von Digital-Imaging-and-Communications-in-Medicine-Computertomographie(DICOM-CT)-Daten exakte Modelle von Frakturen zu erzeugen. Neben der Patientenbehandlung könnte diese Technik auch in der Aus- und Weiterbildung in der Unfallchirurgie zukünftig eine wichtige Rolle spielen. So zeigen erste Ergebnisse, dass hierdurch in der Ausbildung das Verständnis und die Klassifikation von Frakturen verbessert werden können. Besonders interessant ist, dass an lebensgroßen, haptischen Modellen realer Frakturen geübt werden kann. Auch bei erfahrenen Operateuren zeigten sich eine bessere Klassifikationsleistung und Behandlungsplanung im Vergleich zum reinen CT-Datensatz. Insbesondere für komplexe Gelenkfrakturen, z. B. des Acetabulums oder des Tibiakopfes, gibt es erste Evidenz, die einen Nutzen für die Patientenbehandlung belegt, mit Reduktion von Operationszeit und Blutverlust bei Verwendung von 3D-Modellen. Insbesondere der 3D-Druck im Krankenhaus selbst ist durch die kurzen Produktionszeiten für die unfallchirurgische Behandlung interessant. Aufgrund der günstigen Beschaffungs- und Betriebskosten sowie der zunehmenden Verfügbarkeit einfach bedienbarer Software werden in den nächsten Jahren eine steigende Anwendung und Verbreitung dieser Technologie erwartet.

Abstract

The 3D printing technology enables precise fracture models to be generated from volumetric digital imaging and communications in medicine (DICOM) computed tomography (CT) data. Apart from patient treatment, in the future this technology could potentially play a significant role in education and training in the field of orthopedic and trauma surgery. Preliminary results show that the understanding and classification of fractures can be improved when teaching medical students. The use of life-size and haptic models of real fractures for education is particularly interesting. Even experienced surgeons show an improved classification and treatment planning with the help of 3D printed models when compared to plain CT data. Especially for complex articular fractures, such as those of the acetabulum and tibial plateau, initial evidence shows patient benefits in terms of reduced surgery time and blood loss with the help of 3D models. The use of 3D printing on-site at the hospital is of particular interest in orthopedic and trauma surgery as it promises to provide products within a short time. The low investment and running costs and the increasing availability of convenient software solutions will spur increasing dissemination of this technology in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. AlAli AB, Griffin MF, Calonge WM, Butler PE (2018) Evaluating the Use of Cleft Lip and Palate 3D-Printed Models as a Teaching Aid. J Surg Educ 75:200–208. https://doi.org/10.1016/j.jsurg.2017.07.023

    Article  PubMed  Google Scholar 

  2. Bizzotto N, Sandri A, Regis D et al (2015) Three-Dimensional Printing of Bone Fractures: A New Tangible Realistic Way for Preoperative Planning and Education. Surg Innov 22:548–551. https://doi.org/10.1177/1553350614547773

    Article  PubMed  Google Scholar 

  3. Brouwers L, Pull ter Gunne AF, de Jongh MAC et al (2018) The value of 3D printed models in understanding acetabular fractures. 3D Print Addit Manuf 5:37–46. https://doi.org/10.1089/3dp.2017.0043

    Article  Google Scholar 

  4. Chana-Rodríguez F, Mañanes RP, Rojo-Manaute J et al (2016) 3D surgical printing and pre contoured plates for acetabular fractures. Injury. https://doi.org/10.1016/j.injury.2016.08.027

    Article  PubMed  Google Scholar 

  5. Chung KJ, Huang B, Choi CH et al (2015) Utility of 3D Printing for Complex Distal Tibial Fractures and Malleolar Avulsion Fractures. Foot Ankle Int 36:1504–1510. https://doi.org/10.1177/1071100715595695

    Article  PubMed  Google Scholar 

  6. Corona PS, Vicente M, Tetsworth K, Glatt V (2018) Preliminary results using patient-specific 3d printed models to improve preoperative planning for correction of post-traumatic tibial deformities with circular frames. Injury 49:S51–S59. https://doi.org/10.1016/j.injury.2018.07.017

    Article  Google Scholar 

  7. Debarre E, Hivart P, Baranski D, Déprez P (2012) Speedy skeletal prototype production to help diagnosis in orthopaedic and trauma surgery. Methodology and examples of clinical applications. Orthop Traumatol Surg Res 98:597–602. https://doi.org/10.1016/j.otsr.2012.03.016

    Article  CAS  PubMed  Google Scholar 

  8. Frame M, Huntley JS (2012) Rapid prototyping in orthopaedic surgery: A user’s guide. Sci World J. https://doi.org/10.1100/2012/838575

    Article  Google Scholar 

  9. Giannetti S, Bizzotto N, Stancati A, Santucci A (2017) Minimally invasive fixation in tibial plateau fractures using an pre-operative and intra-operative real size 3D printing. Injury 48:784–788. https://doi.org/10.1016/j.injury.2016.11.015

    Article  PubMed  Google Scholar 

  10. Huang Z, Song W, Zhang Y et al (2018) Three-dimensional printing model improves morphological understanding in acetabular fracture learning: A multicenter, randomized, controlled study. PLoS ONE 13:1–12. https://doi.org/10.1371/journal.pone.0191328

    Article  CAS  Google Scholar 

  11. Hurson C, Tansey A, O’Donnchadha B et al (2007) Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 38:1158–1162. https://doi.org/10.1016/j.injury.2007.05.020

    Article  CAS  PubMed  Google Scholar 

  12. Kienzle C (2018) Integration additiver Fertigungsverfahren (3D-Druck) in den orthopädietechnischen Versorgungsalltag. Orthopädie Tech 5:1–8 (Sonderdruck aus Orthopädie Technik 05/18)

    Google Scholar 

  13. Langridge B, Momin S, Coumbe B et al (2018) Systematic Review of the Use of 3‑Dimensional Printing in Surgical Teaching and Assessment. J Surg Educ 75:209–221. https://doi.org/10.1016/j.jsurg.2017.06.033

    Article  PubMed  Google Scholar 

  14. Lim PK, Stephenson GS, Keown TW et al (2018) Use of 3D printed models in resident education for the classification of acetabulum fractures. J Surg Educ 75:1679–1684. https://doi.org/10.1016/j.jsurg.2018.04.019

    Article  PubMed  Google Scholar 

  15. Maini L, Sharma A, Jha S et al (2018) Three-dimensional printing and patient-specific pre-contoured plate: future of acetabulum fracture fixation? Eur J Trauma Emerg Surg 44:215–224. https://doi.org/10.1007/s00068-016-0738-6

    Article  CAS  PubMed  Google Scholar 

  16. Waran V, Narayanan V, Karuppiah R et al (2014) Injecting realism in surgical training—Initial simulation experience with custom 3D models. J Surg Educ 71:193–197. https://doi.org/10.1016/j.jsurg.2013.08.010

    Article  PubMed  Google Scholar 

  17. Weidert S, Mayr M, Achilles F et al (2018) Erprobung eines neuartigen Hybrid-Simulators für dorsale bildwandlerunterstützte perkutane Wirbelsäulenoperationen. Wirbelsäule. https://doi.org/10.1055/s-0043-125162

    Article  Google Scholar 

  18. Wen G, Cong Z, Liu K et al (2016) A practical 3D printed simulator for endoscopic endonasal transsphenoidal surgery to improve basic operational skills. Child’s Nerv Syst:3D. https://doi.org/10.1007/s00381-016-3051-0

    Article  Google Scholar 

  19. Wu A‑M, Wang K, Wang J‑S et al (2018) The addition of 3D printed models to enhance the teaching and learning of bone spatial anatomy and fractures for undergraduate students: a randomized controlled study. Ann Transl Med 6:403. https://doi.org/10.21037/atm.2018.09.59

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xie L, Chen C, Zhang Y et al (2018) Three-dimensional printing assisted ORIF versus conventional ORIF for tibial plateau fractures: A systematic review and meta-analysis. Int J Surg 57:35–44. https://doi.org/10.1016/j.ijsu.2018.07.012

    Article  PubMed  Google Scholar 

  21. Yang L, Grottkau B, He Z, Ye C (2017) Three dimensional printing technology and materials for treatment of elbow fractures. Int Orthop 41:2381–2387. https://doi.org/10.1007/s00264-017-3627-7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Weidert.

Ethics declarations

Interessenkonflikt

S. Weidert, S. Andress, E. Suero, C. Becker, M. Hartel, M. Behle und C. Willy geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

C. Willy, Berlin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidert, S., Andress, S., Suero, E. et al. 3D-Druck in der unfallchirurgischen Fort- und Weiterbildung. Unfallchirurg 122, 444–451 (2019). https://doi.org/10.1007/s00113-019-0650-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-019-0650-8

Schlüsselwörter

Keywords

Navigation