Skip to main content
Log in

Knöcherne Stressreaktionen des Fußes im Sport

Diagnose, Beurteilung und Therapie

Stress reactions in bones of the foot in sport

Diagnosis, assessment and therapy

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Stressreaktionen und -frakturen werden als Strukturschäden des Knochens infolge von wiederholten oder stereotypen Beanspruchungen definiert. Die Balance zwischen Belastung und Entlastung des Knochens wird bei den Stressreaktionen und -frakturen durch die sportartspezifischen Beanspruchungen sowie durch vorliegende exogene bzw. endogene Risikofaktoren gestört. In der Sportorthopädie werden die Lokalisationen in „High-risk- „ und „Low-risk-Frakturen“ unterteilt. Die konventionelle radiologische Diagnostik kann zu Beginn dieser Verletzung negativ ausfallen. Bei persistierenden Beschwerden über 2 Wochen sollte eine weiterführende Diagnostik (Magnetresonanztomographie) durchgeführt werden. Im Bereich des Fußes können Stressreaktionen und -frakturen häufig bilateral oder multifokal auftreten. Am häufigsten betroffen ist das Metatarsale II gefolgt vom Metatarsale III, Metatarsale V, Metatarsale-II-Basis, Malleolus medialis. Sesambein und Naviculare sind High-risk-Frakturen, die eines besonderen klinischen und radiologischen Monitorings bedürfen. Prinzipiell ist eine konservative Therapie mittels des 2-Phasen-Modells die Therapie der Wahl. Bei „delayed union“ oder starker Schmerzhaftigkeit ist eine operative Versorgung indiziert.

Abstract

Stress reactions and stress fractures are defined as structural damage to bone caused by repetitive stress or stereotypical loading. The balance between loading and unloading of bone is disrupted in stress reactions and stress fractures through the sport-specific demands and by the exogenous or endogenous risk factors present. In sports orthopedics the localization of stress reactions and stress fractures are subdivided into high risk fractures and low risk fractures. Conventional diagnostic radiology can initially be inconclusive. With symptoms persisting over 2 weeks further diagnostics using magnetic resonance imaging (MRI) should be performed. In the area of the foot stress reactions and stress fractures can often occur bilaterally or multifocally and most commonly affect the second metatarsals followed by the third metatarsals. Fractures of the fifth metatarsal, second metatarsal base, medial malleolus as well as navicular and sesamoid fractures are high risk fractures requiring special clinical and radiological monitoring. Basically, conservative treatment using the 2-phase model is the treatment of choice. In delayed union or severe pain surgical treatment is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Arendt EA (2000) Stress fracture and the female athlete. Clin Orthop Relat Res 373:131–138

    Article  Google Scholar 

  2. Banal F, Gandjbakheh F, Foltz V et al (2009) Sensitivity and specificity of ultrasonography in early diagnosis of metatarsale bone stress fracture: a pilot study of 37 patients. J Rheumatol 36:1715–1719

    Article  PubMed  Google Scholar 

  3. Bennell K, Matheson G, Meeuwisse W et al (1999) Risk factors for stress fractures. Sports Med 28:91–122

    Article  PubMed  CAS  Google Scholar 

  4. Brukner P, Bradshaw C, Khan KM (1996) Stress fracture: a review of 180 cases. Clin J Sport Med 6:85–89

    Article  PubMed  CAS  Google Scholar 

  5. Boden BP, Osbahr DC, Jimenez C (2001) Review low-risk stress fractures. Am J Sports Med 29:100–111

    PubMed  CAS  Google Scholar 

  6. Busse JW, Kaur J, Mollon JB (2009) Low intensity pulsed ultrasonography for fractures: systematic review of randomised controlled trials. Br Med J 338:351

    Article  Google Scholar 

  7. Dobrindt O, Hoffmeyer B, Ruf J et al (2012) Estimation of return-to-sports-time for athletes with stress fracture – an approach combining risk level of fracture site with severity based on imaging. BMC Musculoskelet Disord 13:139

    Article  PubMed  Google Scholar 

  8. Gösele-Koppenburg A (2002) Stressfrakturen am Fuß und deren Behandlung. In: Engelhardt M, Freiwald J, Zichner L (Hrsg) Sprunggelenk und Fuß Verletzungen und Überlastungsschäden. Novartis Pharma, Basel, S 131–149

  9. Graff K (2009) Stressreaktionen des Knochens. In: Engelhardt M (Hrsg) Sportverletzungen Diagnose, Management und Begleitmassnahmen. Elsevier, Urban & Fischer, S 345–351

  10. Griffiths HJ, Arendt EA (1997) The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med 16:291–306

    Article  PubMed  Google Scholar 

  11. Holick MF (2007) Vitamin D deficiency. N Eng J Med 25:117–128

    Google Scholar 

  12. Iwamoto J, Sato Y, Takeda T et al (2011) Analysis of stress fracture in athletes based on our clinical experience. World J Orthop 18:7–12

    Article  Google Scholar 

  13. Iwamoto J, Takeda T (2003) Stress fractures in athletes: review of 196 cases. J Orthop Sci 8:273–278

    Article  PubMed  Google Scholar 

  14. Lappe J, Cullen D, Haynatzki G et al (2008) Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res 23:741–749

    Article  PubMed  CAS  Google Scholar 

  15. Matheson GO, Clement DB, McKenzie D et al (1987) Stress fracture in athletes. A study of 320 cases. Am J Sports Med 15:46–58

    Article  PubMed  CAS  Google Scholar 

  16. Moretti B, Notarnicola A, Garofalo R (2009) Shock wave in the treamtment of stress fractues. Ultrasound Med Biol 35:1042–1049

    Article  PubMed  Google Scholar 

  17. Nattiv A, Loucks AB, Manore MM et al (2007) American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc 39:1867–1882

    Article  PubMed  Google Scholar 

  18. Orr JD, Glisson RR, Nunley JA (2012) Jones fracture fixation. Am J Sports Med 40:691–698

    Article  PubMed  Google Scholar 

  19. Patel DS, Roth M, Kapil N (2011) Stress fractures: diagnosis, treatment, and prevention. Am Fam Physic 83:39–46

    Google Scholar 

  20. Reeder MT, Dick BH, Atkins JK (1996) Stress fracture current concepts od diagnosis and treatment. Sports Med 22:198–212

    Article  PubMed  CAS  Google Scholar 

  21. Rome K, Handoll HH, Ashford R (2005) Interventions for preventing and treating stress fractures and stress reactions of bone of the lower limbs in young adults. Cochrane Database Syst Rev 2:CD000450

    PubMed  Google Scholar 

  22. Roub LW, Gumerman LW, Hanley EN et al (1979) Bone stress: a radionuclide imaging perspective. Radiology 132:431–438

    PubMed  CAS  Google Scholar 

  23. Savoca CJ (1971) A classification of the aerliest radiographic signs. Radiology 100:519–523

    PubMed  CAS  Google Scholar 

  24. Saxena A, Fullem B, Hannaford D (2000) Results of treatment of 22 naviculare stress fracture and a new proposed radiographic classification system. J Foot Ankle Surg 39:96–103

    Article  PubMed  CAS  Google Scholar 

  25. Shelbourne KD, Fisher DA, Rettig AC et al (1988) Stress fractures of the medial malleolus. Am J Sports Med 16:60–63

    Article  PubMed  CAS  Google Scholar 

  26. Shindle MK, Endo Y, Warren RF et al (2012) Stress fractures about the tibia, foot und ankle. J Am Acad Orthop Surg 20:167–176

    Article  PubMed  Google Scholar 

  27. Snyder RA, DeAngelis JP, Koester MC (2009) Does Shoe insole modification prevent stress fractures? A systemic review. HSS J 5:92–99

    Article  PubMed  Google Scholar 

  28. Taki M, Iwata O, Shiono M (2007) Extracorporael shock wave therapy for resistant stress fracture in athletes. Am J Sports Med 35:1188–1192

    Article  PubMed  Google Scholar 

  29. Thein-Nissenbaum JM, Carr KE (2011) Female athlete triad syndrome in the high school athlete. Phys Ther Sport 12(3):108–116

    Article  PubMed  Google Scholar 

  30. Torg JS, Moyer J, Gauphan JP et al (2010) Management of tarsal navicular stress fractures: conservative versus surgical treatment. A meta analysis. Am J Sports Med 38:1048–1053

    Article  PubMed  Google Scholar 

  31. Wheeler P, Batt ME (2005) Do non-steroidal anti-inflammatory drugs adversely affect stress fracture healing? A short review. Br J Sports Med 39:65–69

    Article  PubMed  CAS  Google Scholar 

  32. Wolff R (2001) Stressfraktur – Ermüdungsbruch – Stressreaktion. Dtsch Z Sportmed 52:124–128

    Google Scholar 

  33. Young AJ, McAllister DR (2006) Evaluation and treatment of tibial stress fracture. Clin Sports Med 25:117–128

    Article  PubMed  Google Scholar 

  34. Zwas ST, Elkanovitch R, Fran G (1987) Interpretation and classification of bone scintigraphic findings in stress fractures. J Nucl Med 28:452–457

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Miltner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miltner, O. Knöcherne Stressreaktionen des Fußes im Sport. Unfallchirurg 116, 512–516 (2013). https://doi.org/10.1007/s00113-013-2373-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-013-2373-6

Schlüsselwörter

Keywords

Navigation