Skip to main content
Log in

Mechanische Einflussfaktoren der Marknagelung auf die femorale Antetorsion

Optobiomechanische Messungen

Femoral nail osteosynthesis

Mechanical factors influencing the femoral antetorsion

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Einleitung

Die Marknagelung ist ein Standardverfahren bei der Versorgung von Femurschaftfrakturen. Ein bisher ungelöstes Problem stellt die hohe Inzidenz der Torsionsfehler dar. Trotz dieser Kenntnis und intraoperativer Vorsicht scheint das Problem nur unbefriedigend gelöst zu sein. Ziel der Arbeit war, die mechanischen Einflüsse des Marknagels während und nach der Verriegelung bei Femurschaftfrakturen auf den femoralen Antetorsionswinkel zu evaluieren.

Material und Methoden

Zur Testung wurde ein mechanisches Gerät entwickelt, mit dem ein definiertes Drehmoment auf das distale Fragment ausgeübt werden konnte. Als optisches Messsystem für die Bestimmung des ATW wurde ein Navigationssystem verwendet. In der 1. Studie wurde der Einfluss der Verriegelung auf die Antetorsion ermittelt. Es erfolgten distale Verriegelungen nach konventioneller Methode (ohne Zielgerät) und unter Verwendung eines Navigationssystems. Die Bewegung des distalen Fragments (Antetorsion, AT) wurde mittels Navigation dokumentiert. In der 2. Studie wurde der Einfluss der Rotationsinstabilität auf die AT nach mechanischer Belastung <4 Nm ermittelt. Dazu wurde die Restrotation des distalen Femurfragments (AT) unter Belastung bestimmt.

Ergebnisse

Die durchschnittliche Restrotation des distalen Fragments um den Nagel betrug bei der konventionellen Freihandbohrung 5,8°. Bei der navigierten Verriegelung resultierte eine Restrotation um durchschnittlich 2°, mit einem signifikanten Unterschied gegenüber der konventionellen Freihandbohrung. Testungen der Rotationsinstabilität unter Belastung zeigten eine Restrotation von durchschnittlich 15,7° des distalen Fragments. Auch nach komplett statischer Verriegelung des Nagels verblieb eine Restrotation von durchschnittlich 14,2°.

Diskussion

Es gelang der Nachweis, dass sowohl die mechanische Stabilität des Nagels als auch der Verriegelungsvorgang an sich einen relevanten Einfluss auf die femorale AT haben. Potentielle klinische Fehlerquellen zur korrekten Einstellung der femoralen AT ergeben sich demnach bei der Verriegelung selbst sowie bei forcierter Rotation des Beins nach Marknagelosteosynthese. In der Summation aller potentiellen Fehlerquellen bei der Marknagelosteosynthese können diese einen essentiellen Einfluss haben.

Abstract

Introduction

Antegrade or retrograde intramedullary nailing is a common and well established procedure for the treatment of femoral shaft fractures. One drawback of this technique is the high incidence of clinically relevant malalignment. Despite intra-operative and radiological improvements this problem has not yet been solved efficiently. The aim of this study was the evaluation of the mechanical influence on the antetorsion angle of intramedullary nails during and after interlocking in femoral shaft fractures.

Material and methods

A mechanical instrument was developed allowing a defined torque to be administered to the distal femur fragment. As an optical measurement system for the assessment of the antetorsion angle, a navigation system was applied. Initially the influence of the interlocking mechanism of the nail on the antetorsion deviation was investigated. The distal interlocking hole was fixed free handed or by using a navigation system. The multidirectional movement of the distal femur fragment was documented. Furthermore, the influence of the rotational stability on the antetorsion angle after mechanical stress of 4 NM was investigated by measuring the remainding rotational capacity of the distal femur fragment.

Results

The average remaining rotational capacity of the distal femur fragment was 5.8° after locking the nail by hand. The navigated locking resulted in a deviation of only 2°, a significant difference compared to the free-hand procedure. The rotational stability under stress showed an average of 15.4° deviation of the distal fragment. Even after complete interlocking of the intramedularry nail a 14.2° rotational deviation was observed.

Discussion

It could be shown that mechanical stability as well as the interlocking itself of femoral nails have a relevant impact on the antetorsional angle of the femur. Potential sources of error of the femoral antetorsion angle can be caused by the interlocking process as well as by forced rotation of the femur after interlocking. Clinical studies are needed to improve our findings, while the observed effects might have an essential influence on the incidence of femoral malalignment after osteosynthesis by intramedullary nailing of the femur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Braten M, Terjesen T, Rossvoll I (1995) Femoral shaft fractures treated by intramedullary nailing. A follow-up study focusing on problems related to the method. Injury 26: 379–383

    Article  PubMed  CAS  Google Scholar 

  2. Citak M, Board TN, Sun Y et al. (2007) Reference marker stability in computer aided orthopedic surgery: A biomechanical study in artificial bone and cadavers. Technol Health Care 15(6): 407–414

    PubMed  CAS  Google Scholar 

  3. Citak M, Gardner MJ, Citak M et al. (2008) Navigated femoral anteversion measurements. A new intraoperative technique. Injury (Epub ahead of print)

  4. Cordier W, Katthagen BD (2000) Femoral torsional deformities. Orthopade 29: 795–801

    Article  PubMed  CAS  Google Scholar 

  5. Cusick RP, Lucas GL, McQueen DA, Graber CD (2000) Construct stiffness of different fixation methods for supracondylar femoral fractures above total knee prostheses. Am J Orthop 29: 695–699

    PubMed  CAS  Google Scholar 

  6. Davids JR, Marshall AD, Blocker ER et al. (2003) Femoral anteversion in children with cerebral palsy. Assessment with two and three-dimensional computed tomography scans. J Bone Joint Surg Am 85: 481–488

    PubMed  Google Scholar 

  7. Grimberg B, Soudry M, Chazar I et al. (1993) Intramedullary nailing of mid-femoral fractures. Harefuah 124: 543–599

    PubMed  CAS  Google Scholar 

  8. Groh GI, Parker J, Allen WC (1992) Fractures of the femur treated by intramedullary nailing using the fluted rod. A report of 193 consecutive cases. Clin Orthop 285: 223–228

    PubMed  Google Scholar 

  9. Grutzner P, Hochstein P, Simon R, Wentzensen A (1999) Determination of torsion angle after shaft fractures of the lower extremity – clinical relevance and measurement techniques. Chirurg 70: 276–284

    Article  PubMed  CAS  Google Scholar 

  10. Herzberg W, Meitz R, Halata Z (1991) Antetorsion of the femur neck. A variable of the trochanter minor? Unfallchirurg 94: 168–171

    PubMed  CAS  Google Scholar 

  11. Hilgert RE, Ohrendorf K, Schafer FK et al. (2006) Preventing malrotation during intramedullary nailing of femoral fractures. Unfallchirurg 109: 855–861

    Article  PubMed  CAS  Google Scholar 

  12. Hofstetter R, Slomczykowski M, Krettek C et al. (2000) Computer-assisted fluoroscopy-based reduction of femoral fractures and antetorsion correction. Comput Aided Surg 5: 311–325

    Article  PubMed  CAS  Google Scholar 

  13. Holmenschlager F, Piatek S, Halm JP, Winckler S (2002) Retrograde intramedullary nailing of femoral shaft fractures. A prospective study. Unfallchirurg 105: 1100–1108

    Article  PubMed  CAS  Google Scholar 

  14. Hora N, Markel DC, Haynes A, Grimm MJ (1999) Biomechanical analysis of supracondylar femoral fractures fixed with modern retrograde intramedullary nails. J Orthop Trauma 13: 539–544

    Article  PubMed  CAS  Google Scholar 

  15. Jaarsma RL, Pakvis DF, Verdonschot N et al. (2004) Rotational malalignment after intramedullary nailing of femoral fractures. J Orthop Trauma 18: 403–409

    Article  PubMed  CAS  Google Scholar 

  16. Janzing HM, Stockman B, Van Damme G et al. (1998) The retrograde intramedullary nail: prospective experience in patients older than sixty-five years. J Orthop Trauma 12: 330–333

    Article  PubMed  CAS  Google Scholar 

  17. Jend HH (1986) Computed tomographic determination of the anteversion angle. Premises and possibilities. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 144: 447–452

    PubMed  CAS  Google Scholar 

  18. Kendoff D, Bogojevic A, Citak M et al. (2007) Experimental validation of noninvasive referencing in navigated procedures on long bones. J Orthop Res 25: 201–207

    Article  PubMed  Google Scholar 

  19. Kendoff D, Citak M, Gardner MJ et al. (2007) Navigated femoral nailing using noninvasive registration of the contralateral intact femur to restore antetorsion. Technique and clinical use. J Orthop Trauma 21(10): 725–730

    Article  PubMed  Google Scholar 

  20. Keppler P, Strecker W, Kinzl L et al. (1999) Sonographic imaging of leg geometry. Orthopade 28: 1015–1022

    PubMed  CAS  Google Scholar 

  21. Khadem R, Yeh CC, Sadeghi-Tehrani M et al. (2000) Comparative tracking error analysis of five different optical tracking systems. Comput Aided Surg 5: 98–107

    Article  PubMed  CAS  Google Scholar 

  22. Knothe U, Knothe Tate ML, Klaue K, Perren SM (2000) Development and testing of a new self-locking intramedullary nail system: testing of handling aspects and mechanical properties. Injury 31: 617–626

    Article  PubMed  CAS  Google Scholar 

  23. Kraus R, Meyer C, Heiss C et al. (2006) Intraoperative radiation exposure in elastic stable intramedullary nailing (ESIN) during the growth period: Observations in 162 long bone shaft fractures. Unfallchirurg 17058054

  24. Krettek C, Mannss J, Miclau T et al. (1998) Deformation of femoral nails with intramedullary insertion. J Orthop Res 16: 572–575

    Article  PubMed  CAS  Google Scholar 

  25. Krettek C, Miclau T, Blauth M et al. (1997) Recurrent rotational deformity of the femur after static locking of intramedullary nails: case reports. J Bone Joint Surg Br 79: 4–8

    Article  PubMed  CAS  Google Scholar 

  26. Krettek C, Rudolf J, Schandelmaier P et al. (1996) Unreamed intramedullary nailing of femoral shaft fractures: operative technique and early clinical experience with the standard locking option. Injury 27: 233–254

    Article  PubMed  CAS  Google Scholar 

  27. Krettek C, Schulte-Eistrup S, Schandelmaier P et al. (1994) Osteosynthesis of femur shaft fractures with the unreamed AO-femur nail. Surgical technique and initial clinical results standard lock fixation. Unfallchirurg 97: 549–567

    PubMed  CAS  Google Scholar 

  28. Maier DG, Reisig R, Keppler P et al. (2005) Post-traumatic torsional differences and functional tests following antegrade or retrograde intramedullary nailing of the distal femoral diaphysis. Unfallchirurg 108: 109–117

    Article  PubMed  CAS  Google Scholar 

  29. Ostrum RF, Agarwal A, Lakatos R, Poka A (2000) Prospective comparison of retrograde and antegrade femoral intramedullary nailing. J Orthop Trauma 14: 496–501

    Article  PubMed  CAS  Google Scholar 

  30. Pfeifer T, Mahlo R, Franzreb M et al. (1995) Computed tomography in the determination of leg geometry. In Vivo 9: 257–261

    PubMed  CAS  Google Scholar 

  31. Piatek S, Westphal T, Bischoff J et al. (2003) Intramedullary stabilisation of metastatic fractures of long bones. Zentralbl Chir 128: 131–138

    Article  PubMed  CAS  Google Scholar 

  32. Ricci WM, Bellabarba C, Lewis R et al. (2001) Angular malalignment after intramedullary nailing of femoral shaft fractures. J Orthop Trauma 15: 90–95

    Article  PubMed  CAS  Google Scholar 

  33. Schandelmaier P, Farouk O, Krettek C et al. (2000) Biomechanics of femoral interlocking nails. Injury 31: 437–443

    Article  PubMed  CAS  Google Scholar 

  34. Schandelmaier P, Krettek C, Tscherne H (1996) Biomechanical study of nine different tibia locking nails. J Orthop Trauma 10: 37–44

    Article  PubMed  CAS  Google Scholar 

  35. Strecker W, Franzreb M, Pfeiffer T et al. (1994) Computerized tomography measurement of torsion angle of the lower extremities. Unfallchirurg 97: 609–613

    PubMed  CAS  Google Scholar 

  36. Strecker W, Hoellen I, Keppler P et al. (1997) Correcting torsion after intramedullary nailing osteosynthesis of the lower extremity. Unfallchirurg 100: 29–38

    Article  PubMed  CAS  Google Scholar 

  37. Waidelich H-A, Strecker W, Schneider E (1992) Computed tomographic torsion-angle and length measurement of the lower extremity. The methods, normal values and radiation load. Fortschr Röntgenstr 157(3): 245–251

    CAS  Google Scholar 

  38. Weil YA, Gardner MJ, Helfet DL, Pearle AD (2007) Computer navigation allows for accurate reduction of femoral fractures. Clin Orthop 460: 185–191

    PubMed  Google Scholar 

  39. Winquist RA, Hansen ST Jr, Clawson DK (2001) Closed intramedullary nailing of femoral fractures. A report of five hundred and twenty cases. 1984. J Bone Joint Surg Am 83: 1912

    PubMed  Google Scholar 

  40. Wolinsky PR, McCarty E, Shyr Y, Johnson K (1999) Reamed intramedullary nailing of the femur: 551 cases. J Trauma 46: 392–399

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Citak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Citak, M., Kendoff, D., Citak, M. et al. Mechanische Einflussfaktoren der Marknagelung auf die femorale Antetorsion. Unfallchirurg 111, 240–246 (2008). https://doi.org/10.1007/s00113-008-1435-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-008-1435-7

Schlüsselwörter

Keywords

Navigation