Skip to main content
Log in

SCFAs induce autophagy in intestinal epithelial cells and relieve colitis by stabilizing HIF-1α

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Hypoxia-inducible factor-1α (HIF-1α) is a critical regulator of barrier integrity during colonic mucosal injury. Previous works have shown that the absence of autophagy is implicated in the development of inflammatory bowel disease (IBD). Additionally, changes in bacterial profiles in the gut are intimately associated with IBD. Although HIF-1α, autophagy, microbiota, and their metabolites are all involved in the pathogenesis of IBD, their roles are not known. In this study, we investigated the relationship between HIF-1α and autophagy in healthy and inflammatory states using transgenic mice, colitis models, and cell culture models. We confirmed that the absence of intestinal epithelial HIF-1α changed the composition of the intestinal microbes and increased the susceptibility of mice to dextran sodium sulfate (DSS)-induced colitis. In addition, autophagy levels in the intestinal epithelial cells (IECs) were significantly reduced in IEC-specific HIF-1α-deficient (HIF-1α∆IEC) mice. Moreover, in the cell culture models, butyrate treatment significantly increased autophagy in HT29 cells under normal conditions, whereas butyrate had little effect on autophagy after HIF-1α ablation. Furthermore, in the DSS-induced colitis model, butyrate administration relieved the colonic injury and suppressed inflammation in Cre-/HIF-1α- (HIF-1αloxP/loxP) mice. However, the butyrate-mediated protection against colonic injury was considerably diminished in the HIF-1α∆IEC mice. These results show that HIF-1α, autophagy, and intestinal microbes are essential for the maintenance of intestinal homeostasis. Butyrate can alleviate DSS-induced colitis by regulating autophagy via HIF-1α. These insights may have important implications for the development of therapeutic strategies for IBD.

Key messages

• The absence of intestinal epithelial HIF-1α leads to downregulation of autophagy in mice.

• The absence of intestinal epithelial HIF-1α exacerbates DSS-induced colitis.

• Short-chain fatty acids (SCFAs) can alleviate DSS-induced colitis by regulating autophagy via HIF-1α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maloy KJ, Powrie F (2011) Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474:298–306

    CAS  PubMed  Google Scholar 

  2. Larabi A, Barnich N, Nguyen H (2019) New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy:1–14. https://doi.org/10.1080/15548627.2019.1635384

  3. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, Boucher G, Brand S, Buning C, Cohain A, Cichon S, D'Amato M, De Jong D, Devaney KL, Dubinsky M, Edwards C, Ellinghaus D, Ferguson LR, Franchimont D, Fransen K, Gearry R, Georges M, Gieger C, Glas J, Haritunians T, Hart A, Hawkey C, Hedl M, Hu X, Karlsen TH, Kupcinskas L, Kugathasan S, Latiano A, Laukens D, Lawrance IC, Lees CW, Louis E, Mahy G, Mansfield J, Morgan AR, Mowat C, Newman W, Palmieri O, Ponsioen CY, Potocnik U, Prescott NJ, Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M, Satsangi J, Schreiber S, Simms LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget HW, De Vos M, Wijmenga C, Wilson DC, Winkelmann J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao H, Silverberg MS, Annese V, Hakonarson H, Brant SR, Radford-Smith G, Mathew CG, Rioux JD, Schadt EE, Daly MJ, Franke A, Parkes M, Vermeire S, Barrett JC, Cho JH (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–124

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chu H, Khosravi A, Kusumawardhani IP, Kwon AH, Vasconcelos AC, Cunha LD, Mayer AE, Shen Y, Wu WL, Kambal A, Targan SR, Xavier RJ, Ernst PB, Green DR, McGovern DP, Virgin HW, Mazmanian SK (2016) Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352:1116–1120

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mizushima N (2018) A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol 20:521–527

    CAS  PubMed  Google Scholar 

  6. Lassen KG, Xavier RJ (2018) Mechanisms and function of autophagy in intestinal disease. Autophagy 14:216–220

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nguyen HT, Lapaquette P, Bringer MA, Darfeuille-Michaud A (2013) Autophagy and Crohn's disease. J Innate Immun 5:434–443

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Deretic V, Master S, Singh S (2008) Autophagy gives a nod and a wink to the inflammasome and Paneth cells in Crohn's disease. Dev Cell 15:641–642

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Thachil E, Hugot JP, Arbeille B, Paris R, Grodet A, Peuchmaur M, Codogno P, Barreau F, Ogier-Denis E, Berrebi D, Viala J (2012) Abnormal activation of autophagy-induced crinophagy in Paneth cells from patients with Crohn's disease. Gastroenterology 142:1097–1099

    PubMed  Google Scholar 

  10. Wehkamp J, Wang G, Kubler I, Nuding S, Gregorieff A, Schnabel A, Kays RJ, Fellermann K, Burk O, Schwab M, Clevers H, Bevins CL, Stange EF (2007) The Paneth cell alpha-defensin deficiency of ileal Crohn's disease is linked to Wnt/Tcf-4. J Immunol 179:3109–3118

    CAS  PubMed  Google Scholar 

  11. Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, Bock J, Martinez-Naves E, Glickman JN, Tschurtschenthaler M, Hartwig J, Hosomi S, Flak MB, Cusick JL, Kohno K, Iwawaki T, Billmann-Born S, Raine T, Bharti R, Lucius R, Kweon MN, Marciniak SJ, Choi A, Hagen SJ, Schreiber S, Rosenstiel P, Kaser A, Blumberg RS (2013) Paneth cells as a site of origin for intestinal inflammation. Nature 503:272–276

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A, Grunberg S, Baldassano RN, Lewis JD, Li H, Thom SR, Bushman FD, Vinogradov SA, Wu GD (2014) Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 147:1055–1063

    PubMed  PubMed Central  Google Scholar 

  13. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, Weir TL, Ehrentraut SF, Pickel C, Kuhn KA, Lanis JM, Nguyen V, Taylor CT, Colgan SP (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17:662–671

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Colgan SP, Taylor CT (2010) Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol 7:281–287

    PubMed  PubMed Central  Google Scholar 

  15. Fang Y, Tan J, Zhang Q (2015) Signaling pathways and mechanisms of hypoxia-induced autophagy in the animal cells. Cell Biol Int 39:891–898

    CAS  PubMed  Google Scholar 

  16. Sun L, Li T, Tang H, Yu K, Ma Y, Yu M, Qiu Y, Xu P, Xiao W, Yang H (2019) Intestinal epithelial cells-derived hypoxia-inducible factor-1alpha is essential for the homeostasis of intestinal intraepithelial lymphocytes. Front Immunol 10:806

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Goncalves P, Araujo JR, Di Santo JP (2018) A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis 24:558–572

    PubMed  Google Scholar 

  18. Ploger S, Stumpff F, Penner GB, Schulzke JD, Gabel G, Martens H, Shen Z, Gunzel D, Aschenbach JR (2012) Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci 1258:52–59

    PubMed  Google Scholar 

  19. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    CAS  PubMed  Google Scholar 

  20. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ji T, Xu C, Sun L, Yu M, Peng K, Qiu Y, Xiao W, Yang H (2015) Aryl hydrocarbon receptor activation down-regulates IL-7 and reduces inflammation in a mouse model of DSS-induced colitis. Dig Dis Sci 60:1958–1966

    CAS  PubMed  Google Scholar 

  22. Hamamoto N, Maemura K, Hirata I, Murano M, Sasaki S, Katsu K (1999) Inhibition of dextran sulphate sodium (DSS)-induced colitis in mice by intracolonically administered antibodies against adhesion molecules (endothelial leucocyte adhesion molecule-1 (ELAM-1) or intercellular adhesion molecule-1 (ICAM-1)). Clin Exp Immunol 117:462–468

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu S, Zhang YG, Lu R, Xia Y, Zhou D, Petrof EO, Claud EC, Chen D, Chang EB, Carmeliet G, Sun J (2015) Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. GUT 64:1082–1094

    CAS  PubMed  Google Scholar 

  24. Kornbluth A, Sachar DB (2010) Ulcerative colitis practice guidelines in adults: American College of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol 105(501–523):524

    Google Scholar 

  25. Qiu Y, Pu A, Zheng H, Liu M, Chen W, Wang W, Xiao W, Yang H (2016) TLR2-dependent signaling for IL-15 production is essential for the homeostasis of intestinal intraepithelial lymphocytes. Mediat Inflamm 2016:4281865

    Google Scholar 

  26. Sanz ML, Polemis N, Morales V, Corzo N, Drakoularakou A, Gibson GR, Rastall RA (2005) In vitro investigation into the potential prebiotic activity of honey oligosaccharides. J Agric Food Chem 53:2914–2921

    CAS  PubMed  Google Scholar 

  27. Shen T, Li S, Cai LD, Liu JL, Wang CY, Gan WJ, Li XM, Wang JR, Sun LN, Deng M, Liu YH, Li JM (2018) Erbin exerts a protective effect against inflammatory bowel disease by suppressing autophagic cell death. Oncotarget 9:12035–12049

    PubMed  PubMed Central  Google Scholar 

  28. Santos S, Andrade DJ (2017) HIF-1alpha and infectious diseases: a new frontier for the development of new therapies. Rev Inst Med Trop Sao Paulo 59:e92

    PubMed  PubMed Central  Google Scholar 

  29. Zeitouni NE, Chotikatum S, von Kockritz-Blickwede M, Naim HY (2016) The impact of hypoxia on intestinal epithelial cell functions: consequences for invasion by bacterial pathogens. Mol Cell Pediatr 3:14

    PubMed  PubMed Central  Google Scholar 

  30. Kaelin WG (2005) Proline hydroxylation and gene expression. Annu Rev Biochem 74:115–128

    CAS  PubMed  Google Scholar 

  31. Schofield CJ, Ratcliffe PJ (2005) Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun 338:617–626

    CAS  PubMed  Google Scholar 

  32. Cosin-Roger J, Simmen S, Melhem H, Atrott K, Frey-Wagner I, Hausmann M, de Valliere C, Spalinger MR, Spielmann P, Wenger RH, Zeitz J, Vavricka SR, Rogler G, Ruiz PA (2017) Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat Commun 8:98

    PubMed  PubMed Central  Google Scholar 

  33. D'Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592

    PubMed  Google Scholar 

  34. Galluzzi L, Green DR (2019) Autophagy-independent functions of the autophagy machinery. Cell 177:1682–1699

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK (2014) Autophagy and apoptosis: where do they meet? Apoptosis 19:555–566

    CAS  PubMed  Google Scholar 

  36. Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16:966–975

    CAS  PubMed  Google Scholar 

  37. Wei Y, Sinha S, Levine B (2008) Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4:949–951

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Parkes M (2012) Evidence from genetics for a role of autophagy and innate immunity in IBD pathogenesis. Dig Dis 30:330–333

    PubMed  Google Scholar 

  39. Randall-Demllo S, Chieppa M, Eri R (2013) Intestinal epithelium and autophagy: partners in gut homeostasis. Front Immunol 4:301

    PubMed  PubMed Central  Google Scholar 

  40. Baxt LA, Xavier RJ (2015) Role of autophagy in the maintenance of intestinal homeostasis. Gastroenterology 149:553–562

    PubMed  PubMed Central  Google Scholar 

  41. Glover LE, Colgan SP (2011) Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology 140:1748–1755

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ortiz-Masia D, Cosin-Roger J, Calatayud S, Hernandez C, Alos R, Hinojosa J, Apostolova N, Alvarez A, Barrachina MD (2014) Hypoxic macrophages impair autophagy in epithelial cells through Wnt1: relevance in IBD. Mucosal Immunol 7:929–938

    CAS  PubMed  Google Scholar 

  43. Parada VD, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, Harmsen H, Faber KN, Hermoso MA (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277

    Google Scholar 

  44. Wu H, Huang S, Chen Z, Liu W, Zhou X, Zhang D (2015) Hypoxia-induced autophagy contributes to the invasion of salivary adenoid cystic carcinoma through the HIF-1α/BNIP3 signaling pathway. Mol Med Rep 12:6467–6474

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Liu D, Hu H, Zhang P, Xie R, Cui W (2019) HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury. Biomed Pharmacother 120:109464

    CAS  PubMed  Google Scholar 

  46. Zhou J, Yao W, Li C, Wu W, Li Q, Liu H (2017) Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells. Cell Death Dis 8:e3001

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun Y, Xing X, Liu Q, Wang Z, Xin Y, Zhang P, Hu C, Liu Y (2015) Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1α/miR-210/Bcl-2 pathway in colon cancer cells. Int J Oncol 46:750–756

    CAS  PubMed  Google Scholar 

  48. Song L, Liu S, Zhang L, Yao H, Gao F, Xu D, Li Q (2016) MiR-21 modulates radiosensitivity of cervical cancer through inhibiting autophagy via the PTEN/Akt/HIF-1α feedback loop and the Akt-mTOR signaling pathway. Tumour Biol 37:12161–12168

    CAS  PubMed  Google Scholar 

  49. Kelly CJ, Colgan SP (2016) Breathless in the gut: implications of luminal O2 for microbial pathogenicity. Cell Host Microbe 19:427–428

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank professor Lin Chen for technical assistance with the HIF-1α∆IEC mice.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81873551 to HY), the Basic Science and Frontier Technology Project of Chongqing (cstc2017jcyjAX0234 to YQ), the Open Project of the State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University(No. SKLKF201904 to YQ), and the Innovative Research Team of Ministry of Education of China (IRT_17R16 to HY).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: YQ and HY.

Analysis and interpretation: CZ, LZL, TML, LHS, and JHY.

Data collection: HDG, LCW, HBZ, PX, XF, and WDX.

Writing the article: CZ, YQ, and HY.

Final approval of the article: CZ, YQ, and HY.

Corresponding authors

Correspondence to Yuan Qiu or Hua Yang.

Ethics declarations

All animal procedures were performed following the guidelines of the Laboratory Animal Welfare and Ethics Committee Of the Third Military Medical University.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Li, L., Li, T. et al. SCFAs induce autophagy in intestinal epithelial cells and relieve colitis by stabilizing HIF-1α. J Mol Med 98, 1189–1202 (2020). https://doi.org/10.1007/s00109-020-01947-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01947-2

Keywords

Navigation