Skip to main content
Log in

Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Papillary thyroid cancer is a prevalent endocrine malignancy. Although alterations in glutamine metabolism have been reported in several types of hematological and solid tumors, little is known about the functions of glutamine and glutaminolysis-associated proteins in papillary thyroid cancer. Here, we demonstrated the glutamine dependence of papillary thyroid cancer cells, and with the use of RT2-PCR arrays, we screened for the aberrant overexpression of glutaminase in human papillary thyroid cancer tissues and cells. These results were later confirmed via real-time PCR, Western blots, and immunohistochemical staining. We found that the levels of glutaminase were significantly correlated with extrathyroidal extension. Inhibition of GLS suppressed glutaminolysis and reduced mitochondrial respiration. The proliferative, viable, migratory, and invasive abilities of papillary thyroid cancer cells were impaired by both the pharmacological inhibition and the genetic knockdown of glutaminase. Additionally, the inhibition of glutaminase deactivated the mechanistic target of the rapamycin complex 1 (mTORC1) signaling pathway, promoting autophagy and apoptosis. Collectively, these findings show that glutaminase-mediated glutamine dependence may be a potential therapeutic target for papillary thyroid cancer.

Key messages

  • PTC cells are glutamine-dependent, and GLS is aberrantly overexpressed in PTC.

  • Inhibition of GLS suppressed glutaminolysis and reduced mitochondrial respiration.

  • Inhibition of GLS impairs the viability of PTC cells.

  • GLS blockade causes deactivation of mTORC1 and induction of autophagy and apoptosis.

  • GLS may be a potential therapeutic target for PTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Costa R, Carneiro BA, Chandra S, Pai SG, Chae YK, Kaplan JB, Garrett HB, Agulnik M, Kopp PA, Giles FJ (2016) Spotlight on lenvatinib in the treatment of thyroid cancer: patient selection and perspectives. Drug Des Devel Ther 10:873–884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kitahara CM, Sosa JA (2016) The changing incidence of thyroid cancer. Nat Rev Endocrinol 12:646–653

    Article  PubMed  Google Scholar 

  3. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM (2017) Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA 317:1338–1348

    Article  PubMed  Google Scholar 

  4. Grogan RH, Kaplan SP, Cao H, Weiss RE, Degroot LJ, Simon CA, Embia OM, Angelos P, Kaplan EL, Schechter RB (2013) A study of recurrence and death from papillary thyroid cancer with 27 years of median follow-up. Surgery 154:1436–1446; discussion 1446–1437

    Article  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  6. Jin L, Alesi GN, Kang S (2016) Glutaminolysis as a target for cancer therapy. Oncogene 35:3619–3625

    Article  PubMed  CAS  Google Scholar 

  7. Ngo H, Tortorella SM, Ververis K, Karagiannis TC (2015) The Warburg effect: molecular aspects and therapeutic possibilities. Mol Biol Rep 42:825–834

    Article  PubMed  CAS  Google Scholar 

  8. van Geldermalsen M, Wang Q, Nagarajah R, Marshall AD, Thoeng A, Gao D, Ritchie W, Feng Y, Bailey CG, Deng N, Harvey K, Beith JM, Selinger CI, O’Toole SA, Rasko JEJ, Holst J (2016) ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35:3201–3208

    Article  PubMed  CAS  Google Scholar 

  9. Willems L, Jacque N, Jacquel A, Neveux N, Maciel TT, Lambert M, Schmitt A, Poulain L, Green AS, Uzunov M et al (2013) Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood 122:3521–3532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhang J, Pavlova NN, Thompson CB (2017) Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J 36:1302–1315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bhutia YD, Babu E, Ramachandran S, Ganapathy V (2015) Amino acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res 75:1782–1788

    Article  PubMed  CAS  Google Scholar 

  12. Katt WP, Cerione RA (2014) Glutaminase regulation in cancer cells: a druggable chain of events. Drug Discov Today 19:450–457

    Article  PubMed  CAS  Google Scholar 

  13. Mates JM, Segura JA, Martin-Rufian M, Campos-Sandoval JA, Alonso FJ, Marquez J (2013) Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr Mol Med 13:514–534

    Article  PubMed  CAS  Google Scholar 

  14. Ferreira AP, Cassago A, Goncalves Kde A, Dias MM, Adamoski D, Ascencao CF, Honorato RV, de Oliveira JF, Ferreira IM, Fornezari C et al (2013) Active glutaminase C self-assembles into a supratetrameric oligomer that can be disrupted by an allosteric inhibitor. J Biol Chem 288:28009–28020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Scalise M, Pochini L, Galluccio M, Indiveri C (2016) Glutamine transport. From energy supply to sensing and beyond. Blood 1857:1147–1157

    CAS  Google Scholar 

  16. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bhutia YD, Ganapathy V (2016) Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta 1863:2531–2539

    Article  PubMed  CAS  Google Scholar 

  18. Daye D, Wellen KE (2012) Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 23:362–369

    Article  PubMed  CAS  Google Scholar 

  19. Duran RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN (2012) Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47:349–358

    Article  PubMed  CAS  Google Scholar 

  20. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Matre P, Velez J, Jacamo R, Qi Y, Su X, Cai T, Chan SM, Lodi A, Sweeney SR, Ma H, Davis RE, Baran N, Haferlach T, Su X, Flores ER, Gonzalez D, Konoplev S, Samudio I, DiNardo C, Majeti R, Schimmer AD, Li W, Wang T, Tiziani S, Konopleva M (2016) Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes. Oncotarget 7:79722–79735

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang J, Wang G, Mao Q, Li S, Xiong W, Lin Y, Ge J (2016) Glutamate dehydrogenase (GDH) regulates bioenergetics and redox homeostasis in human glioma. Oncotarget. https://doi.org/10.18632/oncotarget.7657

  23. White MA, Lin C, Rajapakshe K, Dong J, Shi Y, Tsouko E, Mukhopadhyay R, Jasso D, Dawood W, Coarfa C, Frigo DE (2017) Glutamine transporters are targets of multiple oncogenic signaling pathways in prostate cancer. Mol Cancer Res 15:1017–1028

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Elgogary A, Xu Q, Poore B, Alt J, Zimmermann SC, Zhao L, Fu J, Chen B, Xia S, Liu Y, Neisser M, Nguyen C, Lee R, Park JK, Reyes J, Hartung T, Rojas C, Rais R, Tsukamoto T, Semenza GL, Hanes J, Slusher BS, le A (2016) Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proc Natl Acad Sci U S A 113:E5328–E5336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kim HM, Lee YK, Koo JS (2016) Expression of glutamine metabolism-related proteins in thyroid cancer. Oncotarget 7:53628–53641

    PubMed  PubMed Central  Google Scholar 

  26. Shi RL, Qu N, Luo TX, Xiang J, Liao T, Sun GH, Wang Y, Wang YL, Huang CP, Ji QH (2017) Programmed death-ligand 1 expression in papillary thyroid cancer and its correlation with clinicopathologic factors and recurrence. Thyroid 27:537–545

    Article  PubMed  CAS  Google Scholar 

  27. Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, Hamilton SK, Hansen JC, Curthoys NP (2007) Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J 406:407–414

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, Janes JR, Laidig GJ, Lewis ER, Li J, MacKinnon AL, Parlati F, Rodriguez MLM, Shwonek PJ, Sjogren EB, Stanton TF, Wang T, Yang J, Zhao F, Bennett MK (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther 13:890–901

    Article  PubMed  CAS  Google Scholar 

  29. Green DR, Galluzzi L, Kroemer G (2014) Cell biology. Metabolic control of cell death. Science 345:1250256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Duran RV, Hall MN (2012) Glutaminolysis feeds mTORC1. Cell Cycle 11:4107–4108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Faustino A, Couto JP, Populo H, Rocha AS, Pardal F, Cameselle-Teijeiro JM, Lopes JM, Sobrinho-Simoes M, Soares P (2012) mTOR pathway overactivation in BRAF mutated papillary thyroid carcinoma. J Clin Endocrinol Metab 97:E1139–E1149

    Article  PubMed  CAS  Google Scholar 

  32. Park JM, Seo M, Jung CH, Grunwald D, Stone M, Otto NM, Toso E, Ahn Y, Kyba M, Griffin TJ, Higgins LA, Kim DH (2018) ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction. Autophagy 1–14:584–597

    Article  CAS  Google Scholar 

  33. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lu WQ, Hu YY, Lin XP, Fan W (2017) Knockdown of PKM2 and GLS1 expression can significantly reverse oxaliplatin-resistance in colorectal cancer cells. Oncotarget 8:44171–44185

    PubMed  PubMed Central  Google Scholar 

  35. Yu D, Shi X, Meng G, Chen J, Yan C, Jiang Y, Wei J, Ding Y (2015) Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma. Oncotarget 6:7619–7631

    PubMed  PubMed Central  Google Scholar 

  36. Yin DT, Yu K, Lu RQ, Li X, Xu J, Lei M (2016) Prognostic impact of minimal extrathyroidal extension in papillary thyroid carcinoma. Medicine 95:e5794

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim JY, Heo SH, Choi SK, Song IH, Park IA, Kim YA, Park HS, Park SY, Bang WS, Gong G, Lee HJ (2017) Glutaminase expression is a poor prognostic factor in node-positive triple-negative breast cancer patients with a high level of tumor-infiltrating lymphocytes. Virchows Arch 470:381–389

    Article  PubMed  CAS  Google Scholar 

  38. Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, Carlin SD, La Rocca G, Lyashchenko S, Ploessl K et al (2015) Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med 7:274ra217

    Article  CAS  Google Scholar 

  39. Zhu L, Ploessl K, Zhou R, Mankoff D, Kung HF (2017) Metabolic imaging of glutamine in cancer. J Nucl Med 58:533–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Villar VH, Merhi F, Djavaheri-Mergny M, Duran RV (2015) Glutaminolysis and autophagy in cancer. Autophagy 11:1198–1208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jiang X, Overholtzer M, Thompson CB (2015) Autophagy in cellular metabolism and cancer. J Clin Invest 125:47–54

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fan D, Liu SYW, van Hasselt CA, Vlantis AC, Ng EKW, Zhang H, Dong Y, Ng SK, Chu R, Chan ABW, du J, Wei W, Liu X, Liu Z, Xing M, Chen GG (2015) Estrogen receptor α induces prosurvival autophagy in papillary thyroid cancer via stimulating reactive oxygen species and extracellular signal regulated kinases. J Clin Endocrinol Metab 100:E561–E571

    Article  PubMed  CAS  Google Scholar 

  43. DeBerardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324

    Article  PubMed  CAS  Google Scholar 

  44. Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP (2017) Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 14:11–31

    Article  PubMed  CAS  Google Scholar 

  45. Han T, Guo M, Zhang T, Gan M, Xie C, Wang JB (2017) A novel glutaminase inhibitor-968 inhibits the migration and proliferation of non-small cell lung cancer cells by targeting EGFR/ERK signaling pathway. Oncotarget 8:28063–28073

    PubMed  Google Scholar 

  46. Xiang Y, Stine ZE, Xia J, Lu Y, O’Connor RS, Altman BJ, Hsieh AL, Gouw AM, Thomas AG, Gao P et al (2015) Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest 125:2293–2306

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the technician Chao Guan for his generous help with preparing paraffin-embedded tissue blocks.

Funding

This work was supported by the Distinguished Young Scholars Growth Programs of Higher Education of Liaoning Province (grant number LJQ2015114), the Scientific Research Programs of Liaoning Educational Committee (grant number LK201625), the Natural Science Foundation of Liaoning Province (grant number 2014021039), the Endocrine Diseases Research Programs of Chinese Medical Association Clinical Medicine Scientific Research (grant number 13050810466), the Open Project Program of Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, People’s Republic of China (grant number KLTPM-SX2018-A2), and the Support Programs for Young Scientific and Technological Innovation Talents of Shenyang (grant number RC170058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Feng or Haixia Guan.

Ethics declarations

The study was supported by the First Affiliated Hospital of China Medical University and was conducted in accordance with the Declaration of Helsinki. Tissue specimens were collected with patients’ informed consent according to institutional ethical guidelines approved by the Institute Research Ethics Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 817 kb)

ESM 2

(PDF 1109 kb)

ESM 3

(PDF 1937 kb)

ESM 4

(PDF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Yu, X., Fan, C. et al. Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer. J Mol Med 96, 777–790 (2018). https://doi.org/10.1007/s00109-018-1659-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-1659-0

Keywords

Navigation