Skip to main content
Log in

Update on tissue renin–angiotensin systems

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Angiotensin (Ang) II is not only generated in the circulation by renin and angiotensin-converting enzyme (ACE) but also is produced locally in numerous organs including kidney, vessels, heart, adrenal gland, eye, testis, and brain. Furthermore, widely distributed mast cells have been shown to be a production site. Local Ang II production process is commonly termed the result of a “tissue” renin–angiotensin system (RAS). Because pharmacological experiments do not easily allow targeting of specific tissues, many novel findings about the functional importance of tissue RAS have been collected from transgenic rodent models. These animals either overexpress or lack RAS components in specific tissues and thereby elucidate their local functions. The data to date show that in most tissues local RAS amplify the actions of circulating Ang II with important implications for physiology and pathophysiology of cardiovascular diseases. This review summarizes the recent findings on the importance of tissue RAS in the most relevant cardiovascular organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Reference

  1. Tigerstedt R, Bergman PG (1898) Niere und Kreislauf. Skand Arch Physiol 8:223–271

    Google Scholar 

  2. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243

    Article  PubMed  CAS  Google Scholar 

  3. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87:E1–E9

    PubMed  CAS  Google Scholar 

  4. Santos RA, Simoes e Silva AC, Maric C, Silva DMR, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SVB, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1-7) is an endogenous ligand for the G-protein coupled receptor Mas. Proc Natl Acad Sci U S A 100:8258–8263

    Article  PubMed  CAS  Google Scholar 

  5. Santos RA, Ferreira AJ (2007) Angiotensin-(1-7) and the renin–angiotensin system. Curr Opin Nephrol Hypertens 16:122–128

    PubMed  CAS  Google Scholar 

  6. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109:1417–1427

    PubMed  CAS  Google Scholar 

  7. Burckle C, Bader M (2006) Prorenin and its ancient receptor. Hypertension 48:549–551

    Article  PubMed  CAS  Google Scholar 

  8. Ferguson RK, Turini GA, Brunner HR, Gavras H, McKinstry DN (1977) A specific orally active inhibitor of angiotensin-converting enzyme in man. Lancet 1:775–778

    Article  PubMed  CAS  Google Scholar 

  9. Wong PC, Barnes TB, Chiu AT, Christ DD, Duncia JV, Herblin WF, Timmermans PBMWM (1991) Losartan (DuP 753), an orally active nonpeptide angiotensin II receptor antagonist. Cardiovasc Drug Rev 9:317–339

    Article  CAS  Google Scholar 

  10. Staessen JA, Li Y, Richart T (2006) Oral renin inhibitors. Lancet 368:1449–1456

    Article  PubMed  CAS  Google Scholar 

  11. Bader M, Peters J, Baltatu O, Müller DN, Luft FC, Ganten D (2001) Tissue renin–angiotensin systems: new insights from experimental animal models in hypertension research. J Mol Med 79:76–102

    Article  PubMed  CAS  Google Scholar 

  12. Sakai K, Sigmund CD (2005) Molecular evidence of tissue renin–angiotensin systems: a focus on the brain. Curr Hypertens Rep 7:135–140

    Article  PubMed  CAS  Google Scholar 

  13. Fleming I, Kohlstedt K, Busse R (2006) The tissue renin–angiotensin system and intracellular signalling. Curr Opin Nephrol Hypertens 15:8–13

    Article  PubMed  CAS  Google Scholar 

  14. Paul M, Poyan MA, Kreutz R (2006) Physiology of local renin–angiotensin systems. Physiol Rev 86:747–803

    Article  PubMed  CAS  Google Scholar 

  15. Gomez RA, Lynch KR, Chevalier RL, Everett AD, Johns DW, Wilfong N, Peach MJ, Carey RM (1988) Renin and angiotensinogen gene expression and intrarenal renin distribution during ACE inhibition. Am J Physiol 254:900–906

    Google Scholar 

  16. Schulz WW, Hagler HK, Buja LM, Erdos EG (1988) Ultrastructural localization of angiotensin I-converting enzyme (EC 3.4.15.1) and neutral metalloendopeptidase (EC 3.4.24.11) in the proximal tubule of the human kidney. Lab Invest 59:789–797

    PubMed  CAS  Google Scholar 

  17. Moe OW, Ujiie K, Star RA, Miller RT, Widell J, Alpern RJ, Henrich WL (1993) Renin expression in renal proximal tubule. J Clin Invest 91:774–779

    Article  PubMed  CAS  Google Scholar 

  18. Campbell DJ, Lawrence AC, Towrie A, Kladis A, Valentijn AJ (1991) Differential regulation of angiotensin peptide levels in plasma and kidney of the rat. Hypertension 18:763–773

    PubMed  CAS  Google Scholar 

  19. Navar LG, Harrison Bernard LM, Imig JD, Wang CT, Cervenka L, Mitchell KD (1999) Intrarenal angiotensin II generation and renal effects of AT(1) receptor blockade. J Am Soc Nephrol 10:S266–S272

    PubMed  CAS  Google Scholar 

  20. Kobori H, Ozawa Y, Satou R, Katsurada A, Miyata K, Ohashi N, Hase N, Suzaki Y, Sigmund CD, Navar LG (2007) Kidney-specific enhancement of ANG II stimulates endogenous intrarenal angiotensinogen in gene-targeted mice. Am J Physiol Renal Physiol 293:F938–F945

    Article  PubMed  CAS  Google Scholar 

  21. Matsusaka T, Miyazaki Y, Ichikawa I (2002) The renin angiotensin system and kidney development. Annu Rev Physiol 64:551–561

    Article  PubMed  CAS  Google Scholar 

  22. Crowley SD, Gurley SB, Oliverio MI, Pazmino AK, Griffiths R, Flannery PJ, Spurney RF, Kim HS, Smithies O, Le TH, Coffman TM (2005) Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin–angiotensin system. J Clin Invest 115:1092–1099

    PubMed  CAS  Google Scholar 

  23. Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, Kim HS, Smithies O, Le TH, Coffman TM (2006) Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci U S A 103:17985–17990

    Article  PubMed  CAS  Google Scholar 

  24. Kang N, Walther T, Tian XL, Bohlender J, Fukamizu A, Ganten D, Bader M (2002) Reduced hypertension-induced end-organ damage in mice lacking cardiac and renal angiotensinogen synthesis. J Mol Med 80:359–366

    Article  PubMed  CAS  Google Scholar 

  25. Lavoie JL, Lake-Bruse KD, Sigmund CD (2004) Increased blood pressure in transgenic mice expressing both human renin and angiotensinogen in the renal proximal tubule. Am J Physiol Renal Physiol 286:F965–F971

    Article  PubMed  CAS  Google Scholar 

  26. Sachetelli S, Liu Q, Zhang SL, Liu F, Hsieh TJ, Brezniceanu ML, Guo DF, Filep JG, Ingelfinger JR, Sigmund CD, Hamet P, Chan JS (2006) RAS blockade decreases blood pressure and proteinuria in transgenic mice overexpressing rat angiotensinogen gene in the kidney. Kidney Int 69:1016–1023

    Article  PubMed  CAS  Google Scholar 

  27. Ganten D, Wagner J, Zeh K, Bader M, Michel JB, Paul M, Zimmermann F, Ruf P, Hilgenfeldt U, Ganten U, Kaling M, Bachmann S, Fukamizu A, Mullins JJ, Murakami K (1992) Species specificity of renin kinetics in transgenic rats harboring the human renin and angiotensinogen genes. Proc Natl Acad Sci U S A 89:7806–7810

    Article  PubMed  CAS  Google Scholar 

  28. Muller DN, Shagdarsuren E, Park JK, Dechend R, Mervaala E, Hampich F, Fiebeler A, Ju X, Finckenberg P, Theuer J, Viedt C, Kreuzer J, Heidecke H, Haller H, Zenke M, Luft FC (2002) Immunosuppressive treatment protects against angiotensin II-induced renal damage. Am J Pathol 161:1679–1693

    PubMed  CAS  Google Scholar 

  29. Park JK, Fischer R, Dechend R, Shagdarsuren E, Gapeljuk A, Wellner M, Meiners S, Gratze P, Al Saadi N, Feldt S, Fiebeler A, Madwed JB, Schirdewan A, Haller H, Luft FC, Muller DN (2007) p38 mitogen-activated protein kinase inhibition ameliorates angiotensin II-induced target organ damage. Hypertension 49:481–489

    Article  PubMed  CAS  Google Scholar 

  30. Ichihara A, Kaneshiro Y, Takemitsu T, Sakoda M, Nakagawa T, Nishiyama A, Kawachi H, Shimizu F, Inagami T (2006) Contribution of nonproteolytically activated prorenin in glomeruli to hypertensive renal damage. J Am Soc Nephrol 17:2495–2503

    Article  PubMed  CAS  Google Scholar 

  31. Ichihara A, Hayashi M, Kaneshiro Y, Suzuki F, Nakagawa T, Tada Y, Koura Y, Nishiyama A, Okada H, Uddin MN, Nabi AH, Ishida Y, Inagami T, Saruta T (2004) Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. J Clin Invest 114:1128–1135

    PubMed  CAS  Google Scholar 

  32. Bader M (2007) The second life of the (Pro)renin receptor. J Renin Ang Ald System 8:205–208

    Article  CAS  Google Scholar 

  33. Ganten D, Hayduk K, Brecht HM, Boucher R, Genest J (1970) Evidence of renin release or production in splanchnic territory. Nature 226:551–552

    Article  PubMed  CAS  Google Scholar 

  34. Müller DN, Hilgers KF, Bohlender J, Lippoldt A, Wagner J, Fischli W, Ganten D, Mann JFE, Luft FC (1995) Effects of human renin in the vasculature of rats transgenic for human angiotensinogen. Hypertension 26:272–278

    PubMed  Google Scholar 

  35. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG (2007) Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204:2449–2460

    Article  PubMed  CAS  Google Scholar 

  36. Alenina N, Xu P, Rentzsch B, Bader M (2008) Genetically altered animal models for Mas and angiotensin-(1-7). Exp Physiol (in press)

  37. Burckle C, Danser AHJ, Müller DN, Garrelds IM, Gasc J-M, Plehm R, Peters J, Bader M, Nguyen G (2006) Elevated blood pressure and heart rate in human renin receptor transgenic rats. Hypertension 47:552–556

    Article  PubMed  CAS  Google Scholar 

  38. Batenburg WW, Krop M, Garrelds IM, de Vries R, de Bruin RJA, Burckle C, Mueller DN, Bader M, Nguyen G, Danser AHJ (2007) Prorenin is the endogenous agonist of the (pro)renin receptor. Binding kinetics of renin and prorenin in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor. J Hypertens 25:2441–2453

    PubMed  CAS  Google Scholar 

  39. Sampaio WO, Henrique dC, Santos RA, Schiffrin EL, Touyz RM (2007) Angiotensin-(1–7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension 50:1093–1098

    Article  PubMed  CAS  Google Scholar 

  40. Xu P, Goncalves ACC, Todiras M, Rabelo LA, Sampaio WO, Moura MM, Santos SS, Luft FC, Bader M, Gross V, Alenina N, Santos RA (2008) Endothelial dysfunction and elevated blood pressure in Mas gene-deleted mice. Hypertension 51:574–580

    Article  PubMed  CAS  Google Scholar 

  41. Ramchandran R, Takezako T, Saad Y, Stull L, Fink B, Yamada H, Dikalov S, Harrison DG, Moravec C, Karnik SS (2006) Angiotensinergic stimulation of vascular endothelium in mice causes hypotension, bradycardia, and attenuated angiotensin response. Proc Natl Acad Sci U S A 103:19087–19092

    Article  PubMed  CAS  Google Scholar 

  42. Lindpaintner K, Jin M, Wilhelm MJ, Suzuki F, Linz W, Schoelkens BA, Ganten D (1988) Intracardiac generation of angiotensin and its physiologic role. Circulation 77(suppl 1):I–18–I-23

    Google Scholar 

  43. Dzau VJ (1987) Implications of local angiotensin production in cardiovascular physiology and pharmacology. Am J Cardiol 59:59A–65A

    Article  PubMed  CAS  Google Scholar 

  44. Danser AH, van Kats JP, Admiraal PJ, Derkx FH, Lamers JM, Verdouw PD, Saxena PR, Schalekamp MA (1994) Cardiac renin and angiotensins. Uptake from plasma versus in situ synthesis. Hypertension 24:37–48

    PubMed  CAS  Google Scholar 

  45. Peters J, Farrenkopf R, Clausmeyer S, Zimmer J, Kantachuvesiri S, Sharp MG, Mullins JJ (2002) Functional significance of prorenin internalization in the rat heart. Circ Res 90:1135–1141

    Article  PubMed  CAS  Google Scholar 

  46. Mackins CJ, Kano S, Seyedi N, Schafer U, Reid AC, Machida T, Silver RB, Levi R (2006) Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion. J Clin Invest 116:1063–1070

    Article  PubMed  CAS  Google Scholar 

  47. Gill GN, Ill CR, Simonian MH (1977) Angiotensin stimulation of bovine adrenocortical cell growth. Proc Natl Acad Sci U S A 74:5569–5573

    Article  PubMed  CAS  Google Scholar 

  48. Schelling P, Ganten D, Speck G, Fischer H (1979) Effects of angiotensin II and angiotensin II antagonist saralasin on cell growth and renin in 3T3 and SV3T3 cells. J Cell Physiol 98:503–514

    Article  PubMed  CAS  Google Scholar 

  49. Senbonmatsu T, Ichihara S, Price E Jr., Gaffney FA, Inagami T (2000) Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest 106:R25–R29

    Article  PubMed  CAS  Google Scholar 

  50. Reudelhuber TL, Bernstein KE, Delafontaine P (2007) Is angiotensin II a direct mediator of left ventricular hypertrophy? Time for another look. Hypertension 49:1196–1201

    Article  PubMed  CAS  Google Scholar 

  51. van Kats JP, Methot D, Paradis P, Silversides DW, Reudelhuber TL (2001) Use of a biological peptide pump to study chronic peptide hormone action in transgenic mice. Direct and indirect effects of angiotensin II on the heart. J Biol Chem 276:44012–44017

    Article  PubMed  Google Scholar 

  52. Tian XL, Pinto YM, Costerousse O, Franz WM, Lippoldt A, Hoffmann S, Unger T, Paul M (2004) Over-expression of angiotensin converting enzyme-1 augments cardiac hypertrophy in transgenic rats. Hum Mol Genet 13:1441–1450

    Article  PubMed  CAS  Google Scholar 

  53. Xiao HD, Fuchs S, Campbell DJ, Lewis W, Dudley SC Jr., Kasi VS, Hoit BD, Keshelava G, Zhao H, Capecchi MR, Bernstein KE (2004) Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am J Pathol 165:1019–1032

    PubMed  CAS  Google Scholar 

  54. Hoffmann S, Krause T, van Geel PP, Willenbrock R, Pagel I, Pinto YM, Buikema H, Van Gilst WH, Lindschau C, Paul M, Inagami T, Ganten D, Urata H (2001) Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy. J Mol Med 79:601–608

    Article  PubMed  CAS  Google Scholar 

  55. Hein L, Stevens ME, Barsh GS, Pratt RE, Kobilka BK, Dzau VJ (1997) Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc Natl Acad Sci U S A 94:6391–6396

    Article  PubMed  CAS  Google Scholar 

  56. Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M (2000) Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci U S A 97:931–936

    Article  PubMed  CAS  Google Scholar 

  57. Zhai P, Yamamoto M, Galeotti J, Liu J, Masurekar M, Thaisz J, Irie K, Holle E, Yu X, Kupershmidt S, Roden DM, Wagner T, Yatani A, Vatner DE, Vatner SF, Sadoshima J (2005) Cardiac-specific overexpression of AT1 receptor mutant lacking G alpha q/G alpha i coupling causes hypertrophy and bradycardia in transgenic mice. J Clin Invest 115:3045–3056

    Article  PubMed  CAS  Google Scholar 

  58. Zhai P, Galeotti J, Liu J, Holle E, Yu X, Wagner T, Sadoshima J (2006) An angiotensin II type 1 receptor mutant lacking epidermal growth factor receptor transactivation does not induce angiotensin II-mediated cardiac hypertrophy. Circ Res 99:528–536

    Article  PubMed  CAS  Google Scholar 

  59. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717

    Article  PubMed  CAS  Google Scholar 

  60. Connell JM, Mackenzie SM, Freel EM, Fraser R, Davies E (2008) A lifetime of aldosterone excess: long-term consequences of altered regulation of aldosterone production for cardiovascular function. Endocr Rev (in press)

  61. Ganten D, Minnich JL, Granger P, Hayduk K, Brecht HM, Barbeau A, Boucher R, Genest J (1971) Angiotensin-forming enzyme in brain tissue. Science 173:64–65

    Article  PubMed  CAS  Google Scholar 

  62. Phillips MI, Mann JFE, Haebara H, Hoffman WE, Dietz R, Schelling P, Ganten D (1977) Lowering of hypertension by central saralasin in the absence of plasma renin. Nature 270:445–447

    Article  PubMed  CAS  Google Scholar 

  63. Bader M, Ganten D (2002) Editorial: it’s renin in the brain. Circ Res 90:8–10

    PubMed  CAS  Google Scholar 

  64. Morimoto S, Cassell MD, Beltz TG, Johnson AK, Davisson RL, Sigmund CD (2001) Elevated blood pressure in transgenic mice with brain-specific expression of human angiotensinogen driven by the glial fibrillary acidic protein promoter. Circ Res 89:365–372

    Article  PubMed  CAS  Google Scholar 

  65. Morimoto S, Cassell MD, Sigmund CD (2002) Glia- and neuron-specific expression of the renin–angiotensin system in brain alters blood pressure, water intake, and salt preference. J Biol Chem 277:33235–33241

    Article  PubMed  CAS  Google Scholar 

  66. Lochard N, Silversides DW, van Kats JP, Mercure C, Reudelhuber TL (2003) Brain-specific restoration of angiotensin II corrects renal defects seen in angiotensinogen-deficient mice. J Biol Chem 278:2184–2189

    Article  PubMed  CAS  Google Scholar 

  67. Schinke M, Baltatu O, Böhm M, Peters J, Rascher W, Bricca G, Lippoldt A, Ganten D, Bader M (1999) Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. Proc Natl Acad Sci U S A 96:3975–3980

    Article  PubMed  CAS  Google Scholar 

  68. Baltatu O, Janssen BJ, Bricca G, Plehm R, Monti J, Ganten D, Bader M (2001) Alterations in blood pressure and heart rate variability in transgenic rats with low brain angiotensinogen. Hypertension 37:408–413

    PubMed  CAS  Google Scholar 

  69. Baltatu O, Silva JA Jr., Ganten D, Bader M (2000) The brain renin–angiotensin system modulates angiotensin II-induced hypertension and cardiac hypertrophy. Hypertension 35:409–412

    PubMed  CAS  Google Scholar 

  70. Sinnayah P, Lazartigues E, Sakai K, Sharma RV, Sigmund CD, Davisson RL (2006) Genetic ablation of angiotensinogen in the subfornical organ of the brain prevents the central angiotensinergic pressor response. Circ Res 99:1125–1131

    Article  PubMed  CAS  Google Scholar 

  71. Sakai K, Agassandian K, Morimoto S, Sinnayah P, Cassell MD, Davisson RL, Sigmund CD (2007) Local production of angiotensin II in the subfornical organ causes elevated drinking. J Clin Invest 117:1088–1095

    Article  PubMed  CAS  Google Scholar 

  72. Ryan JW (1967) Renin-like enzyme in the adrenal gland. Science 158:1589–1590

    Article  PubMed  CAS  Google Scholar 

  73. Ganten D, Ganten U, Kubo S, Granger P, Nowaczynski W, Boucher R, Genest J (1974) Influence of sodium, potassium and pituitary hormones on iso-renin in rat adrenal gland. Am J Physiol 227:224–229

    PubMed  CAS  Google Scholar 

  74. Jones CA, Sigmund CD, McGowan RA, Kane-Haas CM, Gross KW (1990) Expression of murine renin genes during fetal development. Mol Endocrinol 4:375–383

    Article  PubMed  CAS  Google Scholar 

  75. Naruse M, Inagami T (1982) Markedly elevated specific renin levels in the adrenal gland in genetically hypertensive rats. Proc Natl Acad Sci U S A 79:3295–3299

    Article  PubMed  CAS  Google Scholar 

  76. Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344:541–544

    Article  PubMed  CAS  Google Scholar 

  77. Sander M, Bader M, Djavidani B, Maser Gluth C, Vecsei P, Mullins J, Ganten D, Peters J (1992) The role of the adrenal gland in hypertensive transgenic rat TGR(mREN2)27. Endocrinology 131:807–814

    Article  PubMed  CAS  Google Scholar 

  78. Bader M, Ganten D (2000) Regulation of renin: new evidence from cultured cells and genetically modified mice. J Mol Med 78:130–139

    Article  PubMed  CAS  Google Scholar 

  79. Clausmeyer S, Stürzebecher R, Peters J (1999) An alternative transcript of the rat renin gene can result in a truncated prorenin that is transported into adrenal mitochondria. Circ Res 84:337–344

    PubMed  CAS  Google Scholar 

  80. Peters J, Wanka H, Peters B, Hoffmann S (2008) A renin transcript lacking exon 1 encodes for a non secretory intracellular renin that increases aldosterone production in transgenic rats. J Cell Mol Med (in press)

  81. Peters J, Münter K, Bader M, Hackenthal E, Mullins JJ, Ganten D (1993) Increased adrenal renin in transgenic hypertensive rats, TGR(mREN2)27, and its regulation by cAMP, angiotensin II, and calcium. J Clin Invest 91:742–747

    Article  PubMed  CAS  Google Scholar 

  82. Sequeira Lopez ML, Pentz ES, Nomasa T, Smithies O, Gomez RA (2004) Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 6:719–728

    Article  PubMed  Google Scholar 

  83. Otis M, Campbell S, Payet MD, Gallo-Payet N (2007) The growth-promoting effects of angiotensin II in adrenal glomerulosa cells: an interactive tale. Mol Cell Endocrinol 273:1–5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The Deutsche Forschungsgemeinschaft supported the work of the authors. We thank Friedrich Luft for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bader, M., Ganten, D. Update on tissue renin–angiotensin systems. J Mol Med 86, 615–621 (2008). https://doi.org/10.1007/s00109-008-0336-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0336-0

Keywords

Navigation