Skip to main content
Log in

A new evidence for the maintenance of the sarcoglycan complex in muscle sarcolemma in spite of the primary absence of δ-SG protein

  • Rapid Communication
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

δ-Sarcoglycan (δ-SG) is one of the first proteins of the sarcoglycan complex (SGC) to be expressed during muscle development, and it has been considered fundamental for the assembling and insertion of the SGC in the sarcolemma. Studies using heterologous cell systems and co-precipitation have demonstrated that SGC assembly was dependent on the simultaneous synthesis of all four sarcoglycan proteins. Mutations in any one of sarcoglycan genes, including the common disease causing mutation c.656delC in the δ-SG gene, block complex formation and its insertion in the plasma membrane. Failure in complex assembly in patients with this mutation would be therefore expected. In this study, we provide evidence for the possibility of preservation of part of the SG complex in the sarcolemma, even in the absence of δ-SG. This is based on the study of one mildly affected patient with limb-girdle muscular dystrophy type 2F (LGMD2F) due to the homozygous c.656delC mutation in the δ-SG gene. Protein analysis in his muscle biopsy presented a significant deficiency of only δ-SG with retention of the other three SG proteins in the sarcolemma. RNA expression analysis showed that ζ-SG, a functionally homologous to δ-SG, is not atypically upregulated in his muscle and would not replace the absent δ-SG, retaining the complex α−β−γ−ζ. The patient started clinical manifestation at age 25, with frequent falls, but he is currently able to walk unassisted at age 42. His clinical course is significantly milder when compared to several other affected patients carrying the same mutation associated with a total deficiency of the four SG proteins in the muscle studied by our group and confirmed in other patients. Therefore, our results add a new in vivo evidence that α-, β-, and γ-SG proteins can be maintained in the sarcolemma without δ-SG. Additionally, LGMD2F, with retention of the part of the SGC, might be associated to a milder clinical course, which has important implications for clinical prognosis and genetic counseling of the family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Bushby KMD (1999) The limb-girdle muscular dystrophies—multiple genes, multiple mechanisms. Hum Mol Genet 8:1875–1882

    Article  PubMed  CAS  Google Scholar 

  2. Zatz M, Vainzof M, Passos-Bueno MR (2000) Limb-girdle muscular dystrophy: one gene with different phenotypes, one phenotypes with different genes Curr Opin Neurol 13(5):511–517, review

    Article  PubMed  CAS  Google Scholar 

  3. Zatz M, de Paula F, Starling A, Vainzof M (2003) The 10 autosomal recessive limb-girdle muscular dystrophies. Neuromuscul Disord 13(7–8):532–544, review

    Article  PubMed  Google Scholar 

  4. Hauser MA, Horrigan SK, Salmikangas P, Viles KD, Tim RW, Torian UM, Anu T (2000) A mutation in the Myotilin gene causes limb-girdle muscular dystrophy 1A. Hum Mol Genet 9:2141–2147

    Article  PubMed  CAS  Google Scholar 

  5. Van der Kooi A, Van Meegen M, Ledderhof TM, McNally EM, de Visser M, Bolhuis PA (1997) Genetic localization of a newly recognized autosomal dominant limb-girdle muscular dystrophy with cardiac involvement (LGMD1B) to chromosome 1q11-21. Am J Hum Genet 60:891–895

    PubMed  Google Scholar 

  6. Minetti C, Sotgia F, Bruno C, Scartezzini P, Broda P, Bado M, Masetti E, Mazzocco M, Egeo A, Donati MA, Volonte D, Galbiati F, Cordone G, Bricarelli FD, Lisanti MP, Zara F (1998) Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 18:365–368

    Article  PubMed  CAS  Google Scholar 

  7. McNally EM, de Sa Moreira E, Duggan DJ, Bonnemann CG, Lisanti MP, Lidov HG, Vainzof M, Passos-Bueno MR, Hoffman EP, Zatz M, Kunkel LM (1998) Caveolin-3 in muscular dystrophy. Hum Mol Genet 7:871–878

    Article  PubMed  CAS  Google Scholar 

  8. Messina DI, Speer MC, Pericak-Vance MA, McNally EM (1997) Linkage of familial dilated cardiomyopathy with conduction defect and muscular dystrophy to chromosome 6q23. Am J Hum Genet 61:909–917

    PubMed  CAS  Google Scholar 

  9. Speer MC, Vance JM, Grubber JM, Lennon Graham F, Stajich JM, Viles KD, Rogala A, McMichael R, Chutkow J, Goldsmith C, Tim RW, Pericak-Vance MA (1999) Identification of a new autosomal dominant limb-girdle muscular dystrophy locus on chromosome 7. Am J Hum Genet 64:556–562

    Article  PubMed  CAS  Google Scholar 

  10. Feit H, Silbergleit A, Schneider LB, Gutierrez JA, Fitoussi RP, Reyes C, Rouleau GA, Brais B, Jackson CE, Beckmann JS, Seboun E (1998) Vocal cord and pharyngeal weakness with autosomal dominant distal myopathy: clinical description and gene localization to 5q31. Am J Hum Genet 63:1732–1742

    Article  PubMed  CAS  Google Scholar 

  11. Starling A, Kok F, Passos-Bueno MR, Vainzof M, Zatz M (2004) A new form of autosomal dominant limb-girdle muscular dystrophy (LGMD1G) with progressive fingers and toes flexion limitation maps to chromosome 4p21. Eur J Hum Genet 12:1033–1140

    Article  PubMed  CAS  Google Scholar 

  12. D’Amico A, Tessa A, Bruno C, Petrini S, Biancheri R, Pane M, Pedemonte M, Ricci E, Falace A, Rossi A, Mercuri E, Santorelli FM, Bertini E (2006) Expanding the clinical spectrum of POMT1 phenotype. Neurology 66(10):1564–1567

    Article  PubMed  CAS  Google Scholar 

  13. Campbell KP, Kahl SD (1989) Association of dystrophin and an integral membrane glycoprotein. Nature 338:259–262

    Article  PubMed  CAS  Google Scholar 

  14. Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345:315–319

    Article  PubMed  CAS  Google Scholar 

  15. Ozawa E, Yoshida M, Suzuki A, Mizuno Y, Hagiwara Y, Noguchi S (1995) Dystrophin-associated proteins in muscular dystrophy. Hum Mol Genet 4:1711–1716

    PubMed  CAS  Google Scholar 

  16. Duggan DJ, Hoffman EP (1996) Autosomal recessive muscular dystrophy and mutations of the sarcoglycan complex. Neuromuscul Disord 6:475–482

    Article  PubMed  CAS  Google Scholar 

  17. Vainzof M, Passos-Bueno MR, Canovas M, Moreira ES, Pavanello RC, Marie SK, Anderson LV, Bonnemann CG, McNally EM, Nigro V, Kunkel LM, Zatz M (1996) The sarcoglycan complex in the six recessive limb-girdle muscular dystrophies. Hum Mol Genet 5:1963–1969

    Article  PubMed  CAS  Google Scholar 

  18. Bonnemann CG (1999) Limb-girdle muscular dystrophies: an overview. J Child Neurol 14:31–33

    PubMed  CAS  Google Scholar 

  19. Hack AA, Groh M, McNally E (2000) Sarcoglycans in muscular dystrophy. Microsc Res Tech 48:167–180

    Article  PubMed  CAS  Google Scholar 

  20. Hack AA, Lam MY, Cordier L, Shoturma DI, Ly CT, Hadhazy MA, Hadhazy MR, Sweeney HL, McNally EM (2000) Differential requirement for individual sarcoglycans and dystrophin in the assembly and function of dystrophin–glycoprotein complex. J Cell Sci 113:2535–2544

    PubMed  CAS  Google Scholar 

  21. Noguchi S, Wakabayashi E, Imamura M, Yoshida M, Osawa E (1999) Developmental expression of sarcoglycan gene products in cultured myocytes. Biochem Biophys Res Comm 262:88–93

    Article  PubMed  CAS  Google Scholar 

  22. Durand M, Suel L, Barbet JP, Beckmann JS, Fourgerousse F (2002) Sequential expression of genes involved in muscular dystrophies during human develop. Morphologie 86:9–12

    PubMed  CAS  Google Scholar 

  23. Shi W, Chen Z, Schottenfeld J, Stahl RC, Kunkel LM, Cham Y-M (2004) Specific assembly pathway of sarcoglycans is dependent on beta and delta sarcoglycan. Muscle Nerve 29:409–419

    Article  PubMed  CAS  Google Scholar 

  24. Holt KH, Campbell KP (1998) Assembly of the sarcoglycan complex. Insights for muscular dystrophy. J Biol Chem 52:34667–34670

    Article  Google Scholar 

  25. Draviam RA, Shand SH, Watkins SC (2006) The β-δ-core of sarcoglycan is essential for deposition at the plasma membrane. Muscle Nerve 34(6):691–701

    Article  PubMed  CAS  Google Scholar 

  26. Gouveia TLF, Paim JFO, Zatz M, Vainzof M (2006) Multiplex analysis for mutations in sarcoglycan genes. Diagn Mol Pathol 15:95–100

    Article  PubMed  CAS  Google Scholar 

  27. Bushby KMD, Beckmann JS (1995) Diagnostic criteria for the limb-girdle muscular dystrophies: report of the ENMC workshop on limb-girdle muscular dystrophies. Neuromuscul Dis 5:71–74

    Article  CAS  Google Scholar 

  28. Vainzof M, Zubrzycka-Gaan EE, Rapaport D, Passos-Bueno MR, Pavanello-Filho RC, Zatz M (1991) Immunofluorescence dystrophin study in Duchenne dystrophy through the concomitant use of two antibodies directed against the carboxy-terminal and the amino-terminal region of the protein. J Neurol Sci 101:141–147

    Article  PubMed  CAS  Google Scholar 

  29. Nigro V, Piluso G, Belsito A, Politano L, Puca AA, Papparella S, Rossi E, Viglietto G, Esposito MG, Abbondanza C, Medici N, Molinari AM, Nigro G, Puca GA (1996) Identification of a novel sarcoglycan gene at 5q33 encoding a sarcolemmal 35 kDa glycoprotein. Hum Mol Genet 5:1179–1186

    Article  PubMed  CAS  Google Scholar 

  30. Vainzof M, Passos-Bueno MR, Pavanello RC, Marie SK, Oliveira AS, Zatz M (1999) Sarcoglycanopathies are responsible for 68% of severe autossomal recessive limb-girdle muscular dystrophy in the Brazilian population. J Neurol Sci 164:44–49

    Article  PubMed  CAS  Google Scholar 

  31. Vainzof M, Moreira ES, Canovas M, Anderson LV, Pavanello RC, Passos-Bueno MR, Zatz M (2000) Partial alpha-sarcoglycan deficiency with retention of the dystrophin–glycoprotein complex in a LGMD2D family. Muscle Nerve 23:984–988

    Article  PubMed  CAS  Google Scholar 

  32. Vorgerd M, Gencik M, Mortier J, Epplen JT, Malin JP, Mortier W (2001) Isolated loss of γ-sarcoglycan: Diagnostic implications in autosomal recessive limb-girdle-muscular-dystrophies. Muscle Nerve 24:421–424

    Article  PubMed  CAS  Google Scholar 

  33. Crosbie RH, Lim LE, Moore SA, Hirano M, Hays AP, Maybaum SW, Collin H, Dovico SA, Stolle CA, Fardeau M, Tome FM, Campbell KP (2000) Molecular and genetic characterization of sarcospan: insights into sarcoglycan–sarcospan interactions. Hum Mol Genet 9:2019–2027

    Article  PubMed  CAS  Google Scholar 

  34. Nigro V, de Sa Moreira E, Piluso G, Vainzof M, Belsito A, Politano L, Puca AA, Passos-Bueno MR, Zatz M (1996) Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta-sarcoglycan gene. Nature Genetics 14:195–198

    Article  PubMed  CAS  Google Scholar 

  35. Passos-Bueno MR, Vainzof M, Moreira ES, Zatz M (1999) Seven autosomal recessive limb-girdle muscular dystrophies in the Brazilian population: from LGMD2A to LGMD2G. Am J Med Genet 19:392–398

    Article  Google Scholar 

  36. Moreira ES, Vainzof M, Suzuki OT, Pavanello RC, Zatz M, Passos-Bueno MR (2003) Genotype–phenotype correlation in 35 Brazilian families with sarcoglycanopathies including the description of three novel mutations. J Med Genet 40:E12

    Article  PubMed  CAS  Google Scholar 

  37. Dincer P, Bonnemann CG, Erdir Aker O, Akcoren Z, Nigro V, Kunkel LM, Topalolu H (2000) A homozygous nonsense mutation in d-sarcoglycan exon 3 in a case of LGMD2F. Neuromuscul Disord 10:247–250

    Article  PubMed  CAS  Google Scholar 

  38. Duggan DJ, Manchester D, Stears KP, Mathews DJ, Hart C, Hoffman EP (1997) Mutations in the delta-sarcoglycan gene are a rare cause of autosomal recessive limb-girdle muscular dystrophy (LGMD2). Neurogenetics 1:49–58

    Article  PubMed  CAS  Google Scholar 

  39. Boito C, Fanin M, Siciliano G, Angelini C, Pegoraro E (2003) Novel sarcoglycan gene mutations in a large cohort of Italian patients. J Med Genet 40:E67

    Article  PubMed  CAS  Google Scholar 

  40. Shiga K, Yoshioka H, Masumiya T, Kimura I, Takeda S, Imamura M (2006) Zeta-sarcoglycan is a functional homologue of gamma-sarcoglycan in the formation of the sarcoglycan complex. Exp Cell Res 312:2083–2092

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The collaboration of the following people is gratefully acknowledged: Dr. Maria Rita Passos-Bueno, Dr. Eloisa S. Moreira, Dr. Ivo Pavanello, Dr. Acary S.B. Oliveira, Dr. Edmar Zanotelli, Dr. Helga Silva, Dr. Lydia U. Yamamoto, Marta Cánovas, Lucas Maia, Dr. Flavia de Paula, Luciana Luchesi, Viviane P. Muniz, Bruno Lima, Alessandra Starling. We would also like to thank the following researchers who kindly provided specific antibodies: J. Chamberlain, L. M. Kunkel, C. Bonnemann, E. E. McNally, G. Faulkner, G. Valle, K. Campbell. This work was supported by FAPESP-CEPID, PRONEX, and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariz Vainzof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouveia, T.L.F., Kossugue, P.M., Paim, J.F. et al. A new evidence for the maintenance of the sarcoglycan complex in muscle sarcolemma in spite of the primary absence of δ-SG protein. J Mol Med 85, 415–420 (2007). https://doi.org/10.1007/s00109-007-0163-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0163-8

Keywords

Navigation