Skip to main content
Log in

Intrakranielle Druck-Volumen-Beziehung

Physiologie und Pathophysiologie

Intracranial pressure-volume relationship

Physiology and pathophysiology

  • Medizin aktuell
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die posttraumatische Hirndrucksteigerung hat einen signifikanten Einfluss auf die Prognose nach einem Schädel-Hirn-Trauma. Nach Ausschöpfung sämtlicher Kompensationsmöglichkeiten steigt der Hirndruck exponentiell an [Normwert des intrakraniellen Drucks (ICPnorm)=(Liquorproduktionsrate*Liquorabflusswiderstand)+venöser Druck(sinus sagittalis)=10–15 mmHg)]. Die ICP-Kurve wird durch die Dehnbarkeit des Gehirns („compliance“ ΔV/ΔP) und durch die Elastizität (ΔP/ΔV) beeinflusst. Marmarou konnte zeigen, dass die nichtlineare kraniospinale Druck-Volumen-Beziehung eine logarithmisch, monoexponentielle streng lineare Beziehung des Drucks zum Volumen beschreibt und bezeichnete diese als Druck-Volumen-Index [„pressure volume index“ (PVI)=log ICP/ΔV]. Der Druck-Volumen-Index beschreibt das benötigte Volumen, um den ICP um das Zehnfache zu erhöhen. Alternativ zur Messung des PVI wurde die Messung der Volumen-Druck-Antwort („volume-pressure response“, VPR) eingeführt. Nach dem Prinzip einer pulsatilen Volumenzunahme als Äquivalent einer sehr kleinen intrakraniellen Volumenzunahme kann die kontinuierliche intrakranielle Compliance bestimmt werden. Um jedoch den tatsächlichen Funktionszustand des geschädigten Gehirns zu ermitteln, liefert erst die Kombination verschiedener Messparameter [partieller Gewebesauerstoffpartialdruck (ptiO2), „cerebral blood flow“ (CBF), Mikrodialyse, Elektrokortikographie (ECoG)] ein verlässliches Bild.

Abstract

Posttraumatic increase of intracranial pressure (ICP) is a strong prognostic factor for the outcome of patients after traumatic brain injury. After exhausting all compensatory mechanisms ICP increases exponentially, where ICPnorm=(CSF production*CSF flow resistance)+venous pressure(sinus sagittalis)=10–15 mmHg. The ICP curve is influenced by the compliance (ΔV/ΔP) and elasticity (ΔP/ΔV) of the brain. Marmarou could demonstrate that the non-linear cranio-spinal pressure-volume relationship describes a logarithmic, mono-exponential, strongly linear relationship between pressure and volume and named this the pressure volume index (PVI=log ICP/ΔV). The pressure volume index describes the volume necessary to increase ICP by a factor of 10. Additionally to PVI the measurement of volume-pressure response (VPR) was introduced. The continuous intracranial compliance could be determined on the principle of pulsatile volume increases as an equivalent of very small intra-cranial volume increases. However, to ascertain functional status of the injured brain a combination of measurements of different parameters, such as tissue oxygen partial pressure (ptiO2), cerebral blood flow (CBF), microdialysis and electrocorticography (ECoG) is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Anile C, Portnoy H D et al (1987) Intracranial compliance is time-dependent. Neurosurgery 20:389–395

    Article  PubMed  CAS  Google Scholar 

  2. Avezaat CJ, Eijndhoven JH van (1986) Clinical observations on the relationship between cerebrospinal fluid pulse pressure and intracranial pressure. Acta Neurochir 79:13–29

    Article  CAS  Google Scholar 

  3. Avezaat CJ, Eijndhoven JH van (1986) The role of the pulsatile pressure variations in intracranial pressure monitoring. Neurosurg Rev 9:113–120

    Article  PubMed  CAS  Google Scholar 

  4. Avezaat CJ, Eijndhoven JH van, Wyper DJ (1979) Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatry 42:687–700

    Article  PubMed  CAS  Google Scholar 

  5. Borgeson SE, Gjeris F, Fedder O et al (1989) Measurement of resistance to CSF outflow – Clinical experience in 333 cases. In: Hoff JT, Betz AL (eds) Intracranial pressue, 7th edn. Springer, Berlin Heidelberg New York, pp 353–359

  6. Bray RS, Sherwood AM, Halter JA et al (1986) Development of a clinical monitoring system by means of ICP waveform analysis. In: Miller JD, Teasdale GM, Rowan JO (eds) Intracranial pressure, 6th edn. Springer, Berlin Heidelberg New York, pp 260–264

  7. Davson H (1967) Physiology of the cerebrospinal fluid. Churchill, London, pp 445

  8. Ekstetd J (1978) CSF hydrodynamic studies in man: normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry 41:345–353

    Article  Google Scholar 

  9. Fuchs G, Schalk HV (2003) Neurologie. In: List W, Osswald PM, Hornke I (Hrsg) Komplikationen und Gefahren in der Anästhesie, 4. Aufl. Springer, Berlin Heidelberg New York Tokio

  10. Gray WJ, Rosner MJ (1987) Pressure-volume index as a function of cerebral perfusion pressure. Part 1: the effects of cerebral perfusion pressure changes and anesthesia. J Neurosurg 67:369–376

    PubMed  CAS  Google Scholar 

  11. Gray WJ, Rosner MJ (1987) Pressure-volume index as a function of cerebral perfusion pressure. Part 2: the effects of low cerebral perfusion pressure and autoregulation. J Neurosurg 67:377–380

    PubMed  CAS  Google Scholar 

  12. Hase U, Reulen HJ, Fenske A et al (1978) Intracranial pressure and pressure volume relation in patients with subarachnoid haemorrhage (SAH). Acta Neurochir 44:69–80

    Article  CAS  Google Scholar 

  13. Hase U, Reulen HJ, Meinig G et al (1978) The influence of the decompressive operation on the intracranial pressure and the pressure-volume relation in patients with severe head injuries. Acta Neurochir 45:1–13

    Article  CAS  Google Scholar 

  14. Katzmann R, Hussey F (1970) A simple constant infusion manometric test for measurement of CSF absorption. Neurology 20:196–200

    Google Scholar 

  15. Kiening KL, Schoening WN, Stover JF et al (2003) Continuous monitoring of intracranial compliance after severe head injury: relation to data quality, intracranial pressure and brain tissue PO2. Br J Neurosurg 17:311–318

    Article  PubMed  CAS  Google Scholar 

  16. Langfitt TW, Weinstein JD, Kassell NF, Gagliardi LJ (1964) Transmission of increased intracranial pressure. I. Within the craniospinal axis. J Neurosurg 21:989–997

    PubMed  CAS  Google Scholar 

  17. Lundberg N (1960) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl 36:1–193

    PubMed  CAS  Google Scholar 

  18. Maksymowicz W, Czosnyka M, Koszewski W et al (1993) In: Avezaat CJJ, Van Eijndhoven JHM, Maas AIR et al. (eds) Intracranial pressure, 8th edn. Springer, Berlin Heidelberg New York Tokio, pp 829–832

  19. Marmarou A (1973) A theoretical and experimental evaluation of the cerebrospinal fluid system. M. Phil Thesis, Drexel University

  20. Marmarou A, Maset AL, Ward JD et al (1987) Contribution of CSF and vascular factors to elevation of ICP in severely head-injured patients. J Neurosurg 66:883–890

    PubMed  CAS  Google Scholar 

  21. Miller JD, Garibi J, Pickard JD (1973) A clinical study of intracranial volume pressure relationships. Br J Surg 60:316

    PubMed  CAS  Google Scholar 

  22. Miller JD, Garibi J, Pickard JD (1973) Induced changes of cerebrospinal fluid volume. Effects during continuous monitoring of ventricular fluid pressure. Arch Neurol 28:265–269

    PubMed  CAS  Google Scholar 

  23. Piper IR, Miller JD, Whittle IR et al (1990) Automated time-averaged analysis of craniospinal compliance. Acta Neurochir Suppl 51:387–390

    CAS  Google Scholar 

  24. Raabe A, Czosnyka M, Piper I et al (1999) Monitoring of intracranial compliance: correction for a change in body position. Acta Neurochir 141:31–36; discussion 35–36

    Article  CAS  Google Scholar 

  25. Ryder HW, Espey FF, Kristoff FV, Evans JP (1951) Observations on the interrelationships of intracranial pressure and cerebral blood flow. J Neurosurg 8:46–58

    Article  PubMed  CAS  Google Scholar 

  26. Troupp H (1975) Intracranial pressure in hydrocephalus after subarachnoid haemorrhage. Zentralbl Neurochir 36:11–17

    PubMed  CAS  Google Scholar 

  27. van Eijndhoven JH, Avezaat CJ (1986) Cerebrospinal fluid pulse pressure and the pulsatile variation in cerebral blood volume: an experimental study in dogs. Neurosurgery 19:507–522

    Article  Google Scholar 

  28. Wyler AR, Kelly WA (1972) Use of antibiotics with external ventriculostomies. J Neurosurg 37:185–187

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenskonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Zweckberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zweckberger, K., Sakowitz, O., Unterberg, A. et al. Intrakranielle Druck-Volumen-Beziehung. Anaesthesist 58, 392–397 (2009). https://doi.org/10.1007/s00101-009-1522-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-009-1522-3

Schlüsselwörter

Keywords

Navigation