Skip to main content
Log in

Therapie des akuten Lungenversagens in einem Behandlungszentrum

Der Erfolg ist abhängig von der Indikationsstellung

  • Originalien
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Fragestellung

Trotz standardisierter Behandlung ist das akute Lungenversagen (ARDS) noch immer mit einer hohen Letalität behaftet. Dabei ist weit gehend unbekannt, durch welche Verlaufsparameter ein Ansprechen der Therapie gekennzeichnet ist und welche Patienten von einer erweiterten Therapie, einschließlich extrakorporaler Membranoxygenierung (ECMO), profitieren.

Methodik

In einer Anwendungsbeobachtung wurden die während der ersten 48 h erhobenen Beatmungs- und Vitalparameter von 93 Patienten analysiert, die einem Zentrum zur erweiterten Therapie des ARDS zugewiesen wurden.

Ergebnisse

Die Gesamtüberlebensrate betrug 70%; bei Patienten, die zusätzlich mit ECMO behandelt wurden, 67%. Patienten, die komorbiditätsbedingt eine relative Kontraindikation zur erweiterten Therapie des ARDS aufwiesen, hatten ein 4,7fach erhöhtes Risiko [95%-Konfidenzintervall (95%-CI): 3,3–24,9] des Nichtüberlebens, Patienten mit Multiorganversagen (MOV) ein 7,5fach erhöhtes Risiko (95%-CI: 2,3–25,2). Überlebende zeigten innerhalb der ersten 24 h eine signifikant ausgeprägtere Verbesserung der Oxygenierung (p<0,05) und der CO2-Elimination (p<0,05).

Schlussfolgerungen

Die erweiterte Therapie des ARDS, einschließlich ECMO, stellt eine therapeutische Option dar, wenn die gängigen Kontraindikationen beachtet werden. Eine Veränderung der Gasaustauschparameter, nicht aber ein bestimmter Wert per se, kann als prognostisches Kriterium für eine günstiges Ergebnis gewertet werden.

Abstract

Subject

Mortality rates remain high for the acute respiratory distress syndrome (ARDS) despite standardised treatment algorithms. Little is known about prognostic factors and exclusion criteria for advanced treatment including extracorporeal membrane oxygenation (ECMO).

Methods

In an observational study design a cohort of 93 patients with severe ARDS admitted to a referral centre were analysed according to ventilatory and vital parameters.

Results

Overall survival rate was 70% and in patients who received ECMO treatment it was 67%. In patients exhibiting relevant co-morbidity the odds ratio for fatal outcome increased to 4.7 (95% CI: 3.3–24.9), and patients with multiple organ failure had a 7.5-fold increase (95% CI: 2.3–25.2) for risk of death. Survivors demonstrated a more pronounced improvement in oxygenation (p<0.05) and CO2 removal (p<0.05) than non-survivors.

Conclusions

Advanced treatment of ARDS including ECMO represents a therapeutic option if none of the currently considered contraindications are present. An improvement in gas exchange parameters, but not a defined value per se may be useful as a prognostic factor for favourable outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a

Literatur

  1. Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    PubMed  Google Scholar 

  2. Amato MB, Barbas CS, Medeiros DM et al. (1995) Beneficial effects of the „open lung approach“ with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 153:1835–1846

    Google Scholar 

  3. Amato MB, Barbas CS, Medeiros DM et al. (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    CAS  PubMed  Google Scholar 

  4. Anderson H, Steimle C, Shapiro M, Delius R, Chapman R, Hirschl R, Bartlett R (1993) Extracorporeal life support for adult cardiorespiratory failure. Surgery 114:161–172

    PubMed  Google Scholar 

  5. Artigas A, Carlet J, Chastang C, Gall JR le, Blanch L, Fernandez R (1992) Clinical presentation, prognostic factors and outcome. In: Artigas A, Lemaire F, Suter P, Zapol WM (eds) Adult respiratory distress syndrome, 1st edn. Churchill Livingstone, Edinburgh, pp 509–525

  6. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2:319–323

    CAS  PubMed  Google Scholar 

  7. Bernard GR, Artigas A, Brigham KL et al. (1994) Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination. The Consensus Committee. Intensive Care Med 20:225–232

    CAS  PubMed  Google Scholar 

  8. Bersten AD, Edibam C, Hunt T, Moran J (2002) Incidence and mortality of acute lung injury and the acute respiratory distress syndrome in three Australian States. Am J Respir Crit Care Med 165:443–448

    Google Scholar 

  9. Brimioulle S, Julien V, Gust R, Kozlowski JK, Naeije R, Schuster DP (2002) Importance of hypoxic vasoconstriction in maintaining oxygenation during acute lung injury. Crit Care Med 30:874–880

    Article  PubMed  Google Scholar 

  10. Brochard L, Roudot-Thoraval F, Roupie E et al. (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838

    CAS  PubMed  Google Scholar 

  11. Brower RG, Shanholtz CB, Fessler HE et al. (1999) Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 27:1492–1498

    CAS  PubMed  Google Scholar 

  12. Brower RG, Ware LB, Berthiaume Y, Matthay MA (2001) Treatment of ARDS. Chest 120:1347–1367

    Article  CAS  PubMed  Google Scholar 

  13. Bugedo G, Bruhn A, Hernandez G, Rojas G, Varela C, Tapia JC, Castillo L (2003) Lung computed tomography during a lung recruitment maneuver in patients with acute lung injury. Intensive Care Med 29:218–225

    PubMed  Google Scholar 

  14. Crotti S, Mascheroni D, Caironi P et al. (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164:131–140

    Google Scholar 

  15. Dembinski R, Kopp R, Henzler D et al. (2003) Extracorporeal gas exchange with the DeltaStream rotary blood pump in experimental lung injury. Artif Organs 27:530–536

    Article  CAS  PubMed  Google Scholar 

  16. Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 166:1510–1514

    Google Scholar 

  17. Falter F, Kuhlen R, Janssens U, Max M, Walbert E, Rossaint R (1999) The necessity of performing transesophageal echocardiography in patients with acute respiratory distress syndrome. Intensive Care Med 25:637

    Article  CAS  PubMed  Google Scholar 

  18. Gattinoni L, Pelosi P, Suter P, Pedoto A, Vercesi P, Lissoni A (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Am J Respir Crit Care Med 158:3–11

    CAS  PubMed  Google Scholar 

  19. Gattinoni L, Tognoni G, Pesenti A et al. (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345:568–573

    CAS  PubMed  Google Scholar 

  20. Held HD, Boettcher S, Hamann L, Uhlig S (2001) Ventilation-induced chemokine and cytokine release is associated with activation of nuclear factor-kappaB and is blocked by steroids. Am J Respir Crit Care Med 163:711–716

    CAS  PubMed  Google Scholar 

  21. Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22:1568–1578

    CAS  PubMed  Google Scholar 

  22. Holtermann W, Kramer M, Peters P, Theisen M, Thiele S, Lukasewitz P, Wickern M van (1999) Wann soll ein Patient mit einem schweren akuten Lungenversagen (ARDS) in ein spezialisiertes Zentrum verlegt werden? Wien Med Wochenschr 149:345–351

    CAS  PubMed  Google Scholar 

  23. Kopp R, Kuhlen R, Max M, Rossaint R (2002) Evidence-based medicine in the therapy of the acute respiratory distress syndrome. Intensive Care Med 28:244–255

    Google Scholar 

  24. Lewandowski K, Pappert D, Kuhlen R, Rossaint R, Gerlach H, Falke KJ (1996) Klinische Aspekte des akuten Lungenversagens des Erwachsenen (ARDS). Anaesthesist 45:1–18

    Article  CAS  Google Scholar 

  25. Lewandowski K, Rossaint R, Pappert D et al. (1997) High survival rate in 122 ARDS patients managed according to a clinical algorithm including extracorporeal membrane oxygenation. Intensive Care Med 23:819–835

    CAS  PubMed  Google Scholar 

  26. Milberg JA, Davis DR, Steinberg KP, Hudson LD (1995) Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA 273:306–309

    CAS  PubMed  Google Scholar 

  27. Morris AH, Wallace CJ, Menlove RL et al. (1994) Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome. Am J Respir Crit Care Med 149:295–305

    CAS  PubMed  Google Scholar 

  28. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA (2002) Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 346:1281–1286

    Article  PubMed  Google Scholar 

  29. Pelosi P, Goldner M, McKibben A et al. (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130

    Google Scholar 

  30. Ranieri VM, Mascia L, Fiore T, Bruno F, Brienza A, Giuliani R (1995) Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. Anesthesiology 83:710–720

    CAS  PubMed  Google Scholar 

  31. Ranieri VM, Suter PM, Tortorella C et al. (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61

    CAS  PubMed  Google Scholar 

  32. Ranieri VM, Zhang H, Mascia L et al. (2000) Pressure-time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93:1320–1328

    CAS  PubMed  Google Scholar 

  33. Richard JC, Brochard L, Vandelet P et al. (2003) Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med 31:89–92

    Article  PubMed  Google Scholar 

  34. Rossaint R, Slama K, Lewandowski K et al. (1992) Extracorporeal lung assist with heparin-coated systems. Int J Artif Organs 15:29–34

    CAS  PubMed  Google Scholar 

  35. Rossaint R, Hahn SM, Pappert D, Falke KJ, Radermacher P (1995) Influence of mixed venous PO2 and inspired O2 fraction on intrapulmonary shunt in patients with severe ARDS. J Appl Physiol 78:1531–1536

    Google Scholar 

  36. Rossaint R, Pappert D, Gerlach H, Lewandowski K, Keh D, Falke K (1997) Extracorporeal membrane oxygenation for transport of hypoxaemic patients with severe ARDS. Br J Anaesth 78:241–246

    CAS  PubMed  Google Scholar 

  37. Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157:1721–1725

    CAS  PubMed  Google Scholar 

  38. Stewart TE, Meade MO, Cook DJ et al. (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure- and Volume-Limited Ventilation Strategy Group. N Engl J Med 338:355–361

    CAS  PubMed  Google Scholar 

  39. Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289

    CAS  PubMed  Google Scholar 

  40. Vincent JL, Moreno R, Takala J et al. (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710

    Article  PubMed  Google Scholar 

  41. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349

    CAS  PubMed  Google Scholar 

  42. Weinert CR, Gross CR, Marinelli WA (2003) Impact of randomized trial results on acute lung injury ventilator therapy in teaching hospitals. Am J Respir Crit Care Med 167:1304–1309

    Article  PubMed  Google Scholar 

  43. Zapol WM, Snider MT, Hill JD et al. (1979) Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 242:2193–2196

    CAS  PubMed  Google Scholar 

  44. Zhang H, Downey GP, Suter PM, Slutsky AS, Ranieri VM (2002) Conventional mechanical ventilation is associated with bronchoalveolar lavage-induced activation of polymorphonuclear leukocytes: a possible mechanism to explain the systemic consequences of ventilator-induced lung injury in patients with ARDS. Anesthesiology 97:1426–1433

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Henzler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henzler, D., Dembinski, R., Kopp, R. et al. Therapie des akuten Lungenversagens in einem Behandlungszentrum. Anaesthesist 53, 235–243 (2004). https://doi.org/10.1007/s00101-004-0653-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-004-0653-9

Schlüsselwörter

Keywords

Navigation