Skip to main content
Log in

Cerebral effects of resuscitation with either epinephrine or vasopressin in an animal model of hemorrhagic shock

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

The use of epinephrine (EN) or vasopressin (VP) in hemorrhagic shock is well established. Due to its specific neurovascular effects, VP might be superior in concern to brain tissue integrity. The aim of this study was to evaluate cerebral effects of either EN or VP resuscitation after hemorrhagic shock.

Methods

After shock induction fourteen pigs were randomly assigned to two treatment groups. After 60 min of shock, resuscitation with either EN or VP was performed. Hemodynamics, arterial blood gases as well as cerebral perfusion pressure (CPP) and brain tissue oxygenation (PtiO2) were recorded. Interstitial lactate, pyruvate, glycerol and glutamate were assessed by cerebral and subcutaneous microdialysis. Treatment-related effects were compared using one-way ANOVA with post hoc Bonferroni adjustment (p < 0.05) for repeated measures.

Results

Induction of hemorrhagic shock led to a significant (p < 0.05) decrease of mean arterial pressure (MAP), cardiac output (CO) and CPP. Administration of both VP and EN sufficiently restored MAP and CPP and maintained physiological PtiO2 levels. Brain tissue metabolism was not altered significantly during shock and subsequent treatment with VP or EN. Concerning the excess of glycerol and glutamate, we found a significant EN-related release in the subcutaneous tissue, while brain tissue values remained stable during EN treatment. VP treatment resulted in a non-significant increase of cerebral glycerol and glutamate.

Conclusions

Both vasopressors were effective in restoring hemodynamics and CPP and in maintaining brain oxygenation. With regards to the cerebral metabolism, we cannot support beneficial effects of VP in this model of hemorrhagic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen RY, Fan FC, Schuessler GB, Simchon S, Chien S. Regional cerebral blood flow and oxygen consumption of the canine brain during hemorrhagic hypotension. Stroke. 1984;15(2):343–50.

    CAS  PubMed  Google Scholar 

  2. Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(2):R76.

    PubMed  PubMed Central  Google Scholar 

  3. Sperry JL, Minei JP, Frankel HL, West MA, Harbrecht BG, Moore EE, et al. Early use of vasopressors after injury: caution before constriction. J Trauma. 2008;64(1):9–14.

    CAS  PubMed  Google Scholar 

  4. Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, et al. European Resuscitation Council Guidelines for Resuscitation 2015: section 1. Executive summary. Resuscitation. 2015;95:1–80.

    PubMed  Google Scholar 

  5. Ditchey RV, Lindenfeld J. Failure of epinephrine to improve the balance between myocardial oxygen supply and demand during closed-chest resuscitation in dogs. Circulation. 1988;78(2):382–9.

    CAS  PubMed  Google Scholar 

  6. Dünser MW, Mayr AJ, Ulmer H, Knotzer H, Sumann G, Pajk W, et al. Arginine vasopressin in advanced vasodilatory shock: a prospective, randomized, controlled study. Circulation. 2003;107(18):2313–9.

    PubMed  Google Scholar 

  7. Morales D, Madigan J, Cullinane S, Chen J, Heath M, Oz M, et al. Reversal by vasopressin of intractable hypotension in the late phase of hemorrhagic shock. Circulation. 1999;3(100):226–9.

    Google Scholar 

  8. Raedler C, Voelckel WG, Wenzel V, Krismer AC, Schmittinger CA, Herff H, et al. Treatment of uncontrolled hemorrhagic shock after liver trauma: fatal effects of fluid resuscitation versus improved outcome after vasopressin. Anesth Analg. 2004;98(6):1759–66.

    CAS  PubMed  Google Scholar 

  9. Stadlbauer KH, Wagner-Berger HG, Raedler C, Voelckel WG, Wenzel V, Krismer AC, et al. Vasopressin, but not fluid resuscitation, enhances survival in a liver trauma model with uncontrolled and otherwise lethal hemorrhagic shock in pigs. Anesthesiology. 2003;98(3):699–704.

    CAS  PubMed  Google Scholar 

  10. Voelckel WG, Raedler C, Wenzel V, Lindner KH, Krismer AC, Schmittinger CA, et al. Arginine vasopressin, but not epinephrine, improves survival in uncontrolled hemorrhagic shock after liver trauma in pigs. Crit Care Med. 2003;31(4):1160–5.

    CAS  PubMed  Google Scholar 

  11. Holmes CL, Patel BM, Russell JA, Walley KR. Physiology of vasopressin relevant to management of septic shock. Chest. 2001;120(3):989–1002.

    CAS  PubMed  Google Scholar 

  12. Sanui M, King DR, Feinstein AJ, Varon AJ, Cohn SM, Proctor KG. Effects of arginine vasopressin during resuscitation from hemorrhagic hypotension after traumatic brain injury. Crit Care Med. 2006;34(2):433–8.

    CAS  PubMed  Google Scholar 

  13. Cavus E, Meybohm P, Doerges V, Hugo HH, Steinfath M, Nordstroem J, et al. Cerebral effects of three resuscitation protocols in uncontrolled haemorrhagic shock: a randomised controlled experimental study. Resuscitation. 2009;80(5):567–72.

    PubMed  Google Scholar 

  14. Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. Special report: the 1996 guide for the care and use of laboratory animals. ILAR J. 1997;38(1):41–8.

    PubMed  Google Scholar 

  15. Wiggers HC, Inhraham RC, Dille J. Hemorrhagic-hypotension shock in locally anesthetized dogs. Am J Physiol. 1945;143:126–33.

    Google Scholar 

  16. Plurad DS, Talving P, Lam L, Inaba K, Green D, Demetriades D. Early vasopressor use in critical injury is associated with mortality independent from volume status. J Trauma. 2011;71(3):565–70.

    PubMed  Google Scholar 

  17. Sperry JL, Minei JP, Frankel HL, West MA, Harbrecht BG, Moore EE, et al. Early use of vasopressors after injury: caution before constriction. J Trauma. 2008;64(1):9–14.

    CAS  PubMed  Google Scholar 

  18. Cohn SM, McCarthy J, Stewart RM, Jonas RB, Dent DL, Michalek JE. Impact of low-dose vasopressin on trauma outcome: prospective randomized study. World J Surg. 2011;35(2):430–9.

    PubMed  Google Scholar 

  19. Beloncle F, Meziani F, Lerolle N, Radermacher P, Asfar P. Does vasopressor therapy have an indication in hemorrhagic shock? Ann Intensive Care. 2013;3(1):13.

    PubMed  PubMed Central  Google Scholar 

  20. Meybohm P, Cavus E, Bein B, Steinfath M, Weber B, Hamann C, et al. Small volume resuscitation: a randomized controlled trial with either norepinephrine or vasopressin during severe hemorrhage. J Trauma. 2007;62(3):640–6.

    CAS  PubMed  Google Scholar 

  21. D’Alessandro A, Moore HB, Moore EE, Wither M, Nemkov T, Gonzalez E, et al. Early hemorrhage triggers metabolic responses that build up during prolonged shock. Am J Physiol Regul Integr Comp Physiol. 2015;308(12):R1034–44.

    PubMed  PubMed Central  Google Scholar 

  22. Peltz ED, D’Alessandro A, Moore EE, Chin T, Silliman CC, Sauaia A, et al. Pathologic metabolism: an exploratory study of the plasma metabolome of critical injury. J Trauma Acute Care Surg. 2015;78(4):742–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Clendenen N, Nunns GR, Moore EE, Reisz JA, Gonzalez E, Peltz E, et al. Hemorrhagic shock and tissue injury drive distinct plasma metabolome derangements in swine. J Trauma Acute Care Surg. 2017;83(4):635–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Vogt N, Herden C, Roeb E, Roderfeld M, Eschbach D, Steinfeldt T, et al. Cerebral alterations following experimental multiple trauma and hemorrhagic shock. Shock. 2018;49(2):164–73.

    PubMed  Google Scholar 

  25. Ida KK, Otsuki DA, Sasaki AT, Borges ES, Castro LU, Sanches TR, et al. Effects of terlipressin as early treatment for protection of brain in a model of haemorrhagic shock. Crit Care. 2015;19:107.

    PubMed  PubMed Central  Google Scholar 

  26. Cavus E, Meybohm P, Dörges V, Stadlbauer KH, Wenzel V, Weiss H, et al. Regional and local brain oxygenation during hemorrhagic shock: a prospective experimental study on the effects of small-volume resuscitation with norepinephrine. J Trauma. 2008;64(3):641–8 (discussion 648-9).

    CAS  PubMed  Google Scholar 

  27. Sarrafzadeh AS, Haux D, Lüdemann L, Amthauer H, Plotkin M, Küchler I, et al. Cerebral ischemia in aneurysmal subarachnoid hemorrhage: a correlative microdialysis-PETstudy. Stroke. 2004;35(3):638–43.

    PubMed  Google Scholar 

  28. Meybohm P, Cavus E, Bein B, Steinfath M, Brand PA, Scholz J, et al. Cerebral metabolism assessed with microdialysis in uncontrolled hemorrhagic shock after penetrating liver trauma. Anesth Analg. 2006;103(4):948–54.

    PubMed  Google Scholar 

  29. Meybohm P, Cavus E, Bein B, Steinfath M, Weber B, Scholz J, et al. Neurochemical monitoring using intracerebral microdialysis during systemic haemorrhage. Acta Neurochir (Wien). 2007;149(7):691–8.

    CAS  PubMed  Google Scholar 

  30. Larentzakis A, Toutouzas KG, Papalois A, Lapidakis G, Doulgerakis S, Doulami G, et al. Porcine model of hemorrhagic shock with microdialysis monitoring. J Surg Res. 2013;179(1):e177–82.

    PubMed  Google Scholar 

  31. Berkowitz ID, Gervais H, Schleien CL, Koehler RC, Dean JM, Traystman RJ. Epinephrine dosage effects on cerebral and myocardial blood flow in an infant swine model of cardiopulmonary resuscitation. Anesthesiology. 1991;75(6):1041–50.

    CAS  PubMed  Google Scholar 

  32. Nosrati R, Lin S, Mohindra R, Ramadeen A, Toronov V, Dorian P. Study of the effects of epinephrine on cerebral oxygenation and metabolism during cardiac arrest and resuscitation by hyperspectral near-infrared spectroscopy. Crit Care Med. 2019. https://doi.org/10.1097/ccm.0000000000003640.

    Article  PubMed  Google Scholar 

  33. Luchette FA, Jenkins WA, Friend LA, Su C, Fischer JE, James JH. Hypoxia is not the sole cause of lactate production during shock. J Trauma. 2002;52(3):415–9.

    CAS  PubMed  Google Scholar 

  34. Levy B, Mansart A, Bollaert PE, Franck P, Mallie JP. Effects of epinephrine and norepinephrine on hemodynamics, oxidative metabolism, and organ energetics in endotoxemic rats. Intensive Care Med. 2003;29(2):292–300.

    PubMed  Google Scholar 

  35. Di Giantomasso D, Bellomo R, May CN. The haemodynamic and metabolic effects of epinephrine in experimental hyperdynamic septic shock. Intensive Care Med. 2005;31:454–62.

    PubMed  Google Scholar 

  36. Hutchinson PJ, Jalloh I, Helmy A, Carpenter KL, Rostami E, Bellander BM, et al. Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med. 2015;41(9):1517–28.

    PubMed  PubMed Central  Google Scholar 

  37. Hillered L, Valtysson J, Enblad P, Persson L. Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry. 1998;64(4):486–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nielsen TH, Olsen NV, Toft P, Nordstrom CH. Cerebral energy metabolism during mitochondrial dysfunction induced by cyanide in piglets. Acta Anaesthesiol Scand. 2013;57(6):793–801.

    CAS  PubMed  Google Scholar 

  39. Johnston AJ, Gupta AK. Advanced monitoring in the neurology intensive care unit: microdialysis. Curr Opin Crit Care. 2002;8(2):121–7.

    PubMed  Google Scholar 

  40. Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth. 2006;97(1):18–25.

    CAS  PubMed  Google Scholar 

  41. Kett-White R, Hutchinson PJ, Al-Rawi PG, Gupta AK, Pickard JD, Kirkpatrick PJ. Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery. 2002;50(6):1213–21.

    PubMed  Google Scholar 

  42. Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C. Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg. 2010;113(3):564–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Millet L, Barbe P, Lafontan M, Berlan M, Galitzky J. Catecholamine effects on lipolysis and blood flow in human abdominal and femoral adipose tissue. J Appl Physiol. 1998;85(1):181–8.

    CAS  PubMed  Google Scholar 

  44. Wenzel V, Lindner KH, Krismer AC, Miller EA, Voelckel WG, Lingnau W. Repeated administration of vasopressin but not epinephrine maintains coronary perfusion pressure after early and late administration during prolonged cardiopulmonary resuscitation in pigs. Circulation. 1999;99(10):1379–84.

    CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Ditz.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This animal study has been approved by the institutional ethics committee. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Küchler, J., Klaus, S., Bahlmann, L. et al. Cerebral effects of resuscitation with either epinephrine or vasopressin in an animal model of hemorrhagic shock. Eur J Trauma Emerg Surg 46, 1451–1461 (2020). https://doi.org/10.1007/s00068-019-01158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-019-01158-6

Keywords

Navigation