Skip to main content

Advertisement

Log in

Modern resuscitation of hemorrhagic shock: what is on the horizon?

  • Review Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

Mortality rates among the severely injured remain high. The successful treatment of hemorrhagic shock relies on expeditious control of bleeding through surgical ligation, packing, or endovascular techniques. An important secondary concern in hemorrhaging patients is how to respond to the lost blood volume. A single method that is able to adequately address all needs of the exsanguinating patient has not yet been agreed upon, despite a large growth of knowledge regarding the causative factors of traumatic shock.

Methods

A review of relevent literature was performed.

Conclusions

Many different trials are currently underway to discriminate ways to improve outcomes in the severely injured and bleeding patient.  This paper will review: (1) recent advances in our understanding of the effects hemorrhagic shock has on the coagulation cascade and vascular endothelium, (2) recent research findings that have changed resuscitation, and (3) resuscitation strategies that are not widely used but under active investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, et al. Epidemiology of trauma deaths: a reassessment. J Trauma-Injury Infect Crit Care. 1995;38(2):185–93.

    CAS  Google Scholar 

  2. Evans JA, van Wessem KJ, McDougall D, Lee KA, Lyons T, Balogh ZJ. Epidemiology of traumatic deaths: comprehensive population-based assessment. World J Surg. 2010;34(1):158–63.

    PubMed  Google Scholar 

  3. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, Oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454(3):345–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–67.

    CAS  PubMed  Google Scholar 

  5. Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010;87(2):300–10.

    CAS  PubMed  Google Scholar 

  6. Levick JR. Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp Physiol. 1991;76(6):825–57.

    CAS  PubMed  Google Scholar 

  7. Weinbaum S. 1997 whitaker distinguished lecture: Models to solve mysteries in biomechanics at the cellular level; a new view of fiber matrix layers. Ann Biomed Eng. 1998;26(4):627–43.

    CAS  PubMed  Google Scholar 

  8. Michel CC. Starling: the formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Exp Physiol. 1997;82(1):1–30.

    CAS  PubMed  Google Scholar 

  9. Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol. 2004;557(Pt 3):889–907.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Hu X, Weinbaum S. A new view of starling’s hypothesis at the microstructural level. Microvasc Res. 1999;58(3):281–304.

    CAS  PubMed  Google Scholar 

  11. Lipowsky HH. The endothelial glycocalyx as a barrier to leukocyte adhesion and its mediation by extracellular proteases. Ann Biomed Eng. 2012;40(4):840–8.

    PubMed Central  PubMed  Google Scholar 

  12. Torres FI, Torres LN, Sondeen JL, Polykratis IA, Dubick MA. In vivo evaluation of venular glycocalyx during hemorrhagic shock in rats using intravital microscopy. Microvasc Res. 2013;85:128–33.

    PubMed  Google Scholar 

  13. Chappell D, Jacob M, Hofmann-Kiefer K, Bruegger D, Rehm M, Conzen P, et al. Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. Anesthesiology. 2007;107(5):776–84.

    CAS  PubMed  Google Scholar 

  14. Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U, et al. TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol. 2009;104(1):78–89.

    CAS  PubMed  Google Scholar 

  15. Chappell D, Jacob M, Hofmann-Kiefer K, Rehm M, Welsch U, Conzen P, et al. Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res. 2009;83(2):388–96.

    CAS  PubMed  Google Scholar 

  16. Sillesen M, Rasmussen LS, Jin G, Jepsen CH, Imam A, Hwabejire JO, et al. Assessment of coagulopathy, endothelial injury, and inflammation after traumatic brain injury and hemorrhage in a porcine model. J Trauma Acute Care Surg. 2014;76(1):12–20.

    CAS  PubMed  Google Scholar 

  17. Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116(17):1896–906.

    CAS  PubMed  Google Scholar 

  18. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, degradation is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254(2):194–200.

    PubMed  Google Scholar 

  19. Haywood-Watson RJ, Holcomb JB, Gonzalez EA, Peng Z, Pati S, Park PW, et al. Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation. PLoS One. 2011;6(8):e23530.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Kozar RA, Peng Z, Zhang R, Holcomb JB, Pati S, Park P, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesth Analg. 2011;112(6):1289–95.

    PubMed Central  PubMed  Google Scholar 

  21. Brohi K, Cohen MJ, Davenport RA. Acute coagulopathy of trauma: mechanism, identification and effect. Curr Opin Crit Care. 2007;13(6):680–5.

    PubMed  Google Scholar 

  22. Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T, et al. Early coagulopathy in multiple injury: an analysis from the german trauma registry on 8724 patients. Injury. 2007;38(3):298–304.

    PubMed  Google Scholar 

  23. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54(6):1127–30.

    PubMed  Google Scholar 

  24. Floccard B, Rugeri L, Faure A, Saint Denis M, Boyle EM, Peguet O, et al. Early coagulopathy in trauma patients: An on-scene and hospital admission study. Injury. 2012;43(1):26–32.

    PubMed  Google Scholar 

  25. Noel P, Cashen S, Patel B. Trauma-induced coagulopathy: from biology to therapy. Semin Hematol. 2013;50(3):259–69.

    PubMed  Google Scholar 

  26. Johansson PI, Ostrowski SR. Acute coagulopathy of trauma: balancing progressive catecholamine induced endothelial activation and damage by fluid phase anticoagulation. Med Hypotheses. 2010;75(6):564–7.

    CAS  PubMed  Google Scholar 

  27. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245(5):812–8.

    PubMed Central  PubMed  Google Scholar 

  28. Cohen MJ, Kutcher M, Redick B, Nelson M, Call M, Knudson MM, et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J Trauma Acute Care Surg. 2013;75(1 Suppl 1):S40–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Johansson PI, Sørensen AM, Perner A, Welling KL, Wanscher M, Larsen CF, et al. Disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? An observational study. Crit Care. 2011;15(6):R272.

    PubMed Central  PubMed  Google Scholar 

  30. Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73(1):60–6.

    CAS  PubMed  Google Scholar 

  31. Rourke C, Curry N, Khan S, Taylor R, Raza I, Davenport R, et al. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost. 2012;10(7):1342–51.

    CAS  PubMed  Google Scholar 

  32. Kashuk JL, Moore EE, Sawyer M, Wohlauer M, Pezold M, Barnett C, et al. Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma. Ann Surg. 2010;252(3):434–44.

    PubMed  Google Scholar 

  33. Schochl H, Voelckel W, Maegele M, Solomon C. Trauma-associated hyperfibrinolysis. Hamostaseologie. 2012;32(1):22–7.

    CAS  PubMed  Google Scholar 

  34. Tauber H, Innerhofer P, Breitkopf R, Westermann I, Beer R, El Attal R, et al. Prevalence and impact of abnormal ROTEM(R) assays in severe blunt trauma: results of the ‘diagnosis and treatment of trauma-induced coagulopathy (DIA-TRE-TIC) study’. Br J Anaesth. 2011;107(3):378–87.

    CAS  PubMed  Google Scholar 

  35. Barros JM, do Nascimento PJ, Marinello JL, Braz LG, Carvalho LR, Vane LA, et al. The effects of 6 % hydroxyethyl starch-hypertonic saline in resuscitation of dogs with hemorrhagic shock. Anesth Analg. 2011;112(2):395–404.

    CAS  PubMed  Google Scholar 

  36. Zaar M, Lauritzen B, Secher NH, Krantz T, Nielsen HB, Madsen PL, et al. Initial administration of hydroxyethyl starch vs lactated ringer after liver trauma in the pig. Br J Anaesth. 2009;102(2):221–6.

    CAS  PubMed  Google Scholar 

  37. Ogilvie MP, Pereira BM, McKenney MG, McMahon PJ, Manning RJ, Namias N, et al. First report on safety and efficacy of hetastarch solution for initial fluid resuscitation at a level 1 trauma center. J Am Coll Surg. 2010;210(5):870–82.

    PubMed  Google Scholar 

  38. James MF, Michell WL, Joubert IA, Nicol AJ, Navsaria PH, Gillespie RS. Resuscitation with hydroxyethyl starch improves renal function and lactate clearance in penetrating trauma in a randomized controlled study: the FIRST trial (fluids in resuscitation of Severe Trauma). Br J Anaesth. 2011;107(5):693–702.

    CAS  PubMed  Google Scholar 

  39. Mutter TC, Ruth CA, Dart AB. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev. 2013;7:CD007594.

    PubMed  Google Scholar 

  40. Bellmann R, Feistritzer C, Wiedermann CJ. Effect of molecular weight and substitution on tissue uptake of hydroxyethyl starch: a meta-analysis of clinical studies. Clin Pharmacokinet. 2012;51(4):225–36.

    CAS  PubMed  Google Scholar 

  41. Sirtl C, Laubenthal H, Zumtobel V, Kraft D, Jurecka W. Tissue deposits of hydroxyethyl starch (HES): dose-dependent and time-related. Br J Anaesth. 1999;82(4):510–5.

    CAS  PubMed  Google Scholar 

  42. Rizoli SB, Kapus A, Fan J, Li YH, Marshall JC, Rotstein OD. Immunomodulatory effects of hypertonic resuscitation on the development of lung inflammation following hemorrhagic shock. J Immunol. 1998;161(11):6288–96.

    CAS  PubMed  Google Scholar 

  43. Vassar MJ, Perry CA, Gannaway WL, Holcroft JW. 7.5 % sodium chloride/dextran for resuscitation of trauma patients undergoing helicopter transport. Arch Surg. 1991;126(9):1065–72.

    CAS  PubMed  Google Scholar 

  44. Bulger EM, May S, Kerby JD, Emerson S, Stiell IG, Schreiber MA, et al. Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock: a randomized, placebo controlled trial. Ann Surg. 2011;253(3):431–41.

    PubMed Central  PubMed  Google Scholar 

  45. Bulger EM, May S, Brasel KJ, Schreiber M, Kerby JD, Tisherman SA, et al. Out-of-hospital hypertonic resuscitation following severe traumatic brain injury: a randomized controlled trial. JAMA. 2010;304(13):1455–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. CRASH-2 trial c, Shakur H, Roberts R, Bautista R, Caballero J, Coats T, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

    CAS  PubMed  Google Scholar 

  47. CRASH-2 collaborators, Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: An exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377(9771):1096–101 1101.e1-2.

    CAS  PubMed  Google Scholar 

  48. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg. 2012;147(2):113–9.

    CAS  PubMed  Google Scholar 

  49. Bickell WH, Wall MJ Jr, Pepe PE, Martin RR, Ginger VF, Allen MK, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331(17):1105–9.

    CAS  PubMed  Google Scholar 

  50. Dutton RP, Mackenzie CF, Scalea TM. Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. J Trauma. 2002;52(6):1141–6.

    PubMed  Google Scholar 

  51. Morrison CA, Carrick MM, Norman MA, Scott BG, Welsh FJ, Tsai P, et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma. 2011;70(3):652–63.

    PubMed  Google Scholar 

  52. Borgman MA, Spinella PC, Perkins JG, Grathwohl KW, Repine T, Beekley AC, Sebesta J, Jenkins D, Wade CE, Holcomb JB. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma-Injury Infect Crit Care. 2007;63(4):805–13.

    Google Scholar 

  53. Holcomb JB, Wade CE, Michalek JE, Chisholm GB, Zarzabal LA, Schreiber MA, et al. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg. 2008;248(3):447–58.

    PubMed  Google Scholar 

  54. Sperry JL, Ochoa JB, Gunn SR, Alarcon LH, Minei JP, Cuschieri J, et al. An FFP:PRBC transfusion ratio >/=1:1.5 is associated with a lower risk of mortality after massive transfusion. J Trauma-Injury Infect Crit Care. 2008;65(5):986–93.

    Google Scholar 

  55. Holcomb JB, Del Junco DJ, Fox EE, Wade CE, Cohen MJ, Schreiber MA, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. Arch Surg. 2012;15:1–10.

    Google Scholar 

  56. Holcomb JB, del Junco DJ, Fox EE, Wade CE, Cohen MJ, Schreiber MA, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013;148(2):127–36.

    PubMed Central  PubMed  Google Scholar 

  57. del Junco DJ, Holcomb JB, Fox EE, Brasel KJ, Phelan HA, Bulger EM, et al. Resuscitate early with plasma and platelets or balance blood products gradually: findings from the PROMMTT study. J Trauma Acute Care Surg. 2013;75(1 Suppl 1):S24–30.

    PubMed Central  PubMed  Google Scholar 

  58. Kim BD, Zielinski MD, Jenkins DH, Schiller HJ, Berns KS, Zietlow SP. The effects of prehospital plasma on patients with injury: a prehospital plasma resuscitation. J Trauma Acute Care Surg. 2012;73(2 Suppl 1):S49–53.

    PubMed  Google Scholar 

  59. Inaba K, Branco BC, Rhee P, Blackbourne LH, Holcomb JB, Teixeira PG, et al. Impact of plasma transfusion in trauma patients who do not require massive transfusion. J Am Coll Surg. 2010;210(6):957–65.

    PubMed  Google Scholar 

  60. Moore EE, Chin TL, Chapman MC, Gonzalez E, Moore HB, Silliman CC, et al. Plasma first in the field for postinjury hemorrhagic shock. Shock. 2014;41(Suppl 1):35–8.

    PubMed  Google Scholar 

  61. Sapsford W, Watts S, Cooper G, Kirkman E. Recombinant activated factor VII increases survival time in a model of incompressible arterial hemorrhage in the anesthetized pig. J Trauma. 2007;62(4):868–79.

    CAS  PubMed  Google Scholar 

  62. Hauser CJ, Boffard K, Dutton R, Bernard GR, Croce MA, Holcomb JB, et al. Results of the CONTROL trial: efficacy and safety of recombinant activated factor VII in the management of refractory traumatic hemorrhage. J Trauma. 2010;69(3):489–500.

    CAS  PubMed  Google Scholar 

  63. Wade CE, Eastridge BJ, Jones JA, West SA, Spinella PC, Perkins JG, et al. Use of recombinant factor VIIa in US military casualties for a five-year period. J Trauma. 2010;69(2):353–9.

    CAS  PubMed  Google Scholar 

  64. Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(2):R76.

    PubMed Central  PubMed  Google Scholar 

  65. Stinger HK, Spinella PC, Perkins JG, Grathwohl KW, Salinas JM, Wenjun Z, Hess JR, et al. The ratio of fibrinogen to red cells transfused affects survival in casualties receiving massive transfusions at an army combat support hospital. J Trauma-Injury Infect Crit Care. 2008;64((2) (Supplement)):S79–85 Advances in Combat Casualty Care: Clinical Outcomes from the War.

    CAS  Google Scholar 

  66. Bruce D, Nokes TJ. Prothrombin complex concentrate (beriplex P/N) in severe bleeding: experience in a large tertiary hospital. Crit Care. 2008;12(4):R105.

    PubMed Central  PubMed  Google Scholar 

  67. Toth P, Van Veen JJ, Robinson K, Maclean RM, Hampton KK, Laidlaw S, et al. Real world usage of PCC to “rapidly” correct warfarin induced coagulopathy. Blood Transfus. 2013;11(4):500–5.

    PubMed Central  PubMed  Google Scholar 

  68. Grottke O, Braunschweig T, Spronk HM, Esch S, Rieg AD, van Oerle R, et al. Increasing concentrations of prothrombin complex concentrate induce disseminated intravascular coagulation in a pig model of coagulopathy with blunt liver injury. Blood. 2011;118(7):1943–51.

    CAS  PubMed  Google Scholar 

  69. Schöchl H, Nienaber U, Maegele M, Hochleitner G, Primavesi F, Steitz B, et al. Transfusion in trauma: thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care. 2011;15(2):R83.

    PubMed Central  PubMed  Google Scholar 

  70. Innerhofer P, Westermann I, Tauber H, Breitkopf R, Fries D, Kastenberger T, et al. The exclusive use of coagulation factor concentrates enables reversal of coagulopathy and decreases transfusion rates in patients with major blunt trauma. Injury. 2013;44(2):209–16.

    PubMed  Google Scholar 

  71. Lelkens CC, Koning JG, de Kort B, Floot IB, Noorman F. Experiences with frozen blood products in the Netherlands military. Transfus Apher Sci. 2006;34(3):289–98.

    CAS  PubMed  Google Scholar 

  72. Pati S, Matijevic N, Doursout MF, Ko T, Cao Y, Deng X, et al. Protective effects of fresh frozen plasma on vascular endothelial permeability, coagulation, and resuscitation after hemorrhagic shock are time dependent and diminish between days 0 and 5 after thaw. J Trauma-Injury Infect Crit Care. 2010;69(Suppl 1):S55–63.

    Google Scholar 

  73. Glassberg E, Nadler R, Gendler S, Abramovich A, Spinella PC, Gerhardt RT, et al. Freeze-dried plasma at the point of injury: from concept to doctrine. Shock. 2013;40(6):444–50.

    CAS  PubMed  Google Scholar 

  74. Lee TH, Van PY, Spoerke NJ, Hamilton GJ, Cho SD, Watson K, et al. The use of lyophilized plasma in a severe multi-injury pig model. Transfusion. 2013;53(Suppl 1):72S–9S.

    CAS  PubMed  Google Scholar 

  75. Wataha K, Menge T, Deng X, Shah A, Bode A, Holcomb JB, et al. Spray-dried plasma and fresh frozen plasma modulate permeability and inflammation in vitro in vascular endothelial cells. Transfusion. 2013;53(Suppl 1):80S–90S.

    CAS  PubMed  Google Scholar 

  76. Martinaud C, Ausset S, Deshayes AV, Cauet A, Demazeau N, Sailliol A. Use of freeze-dried plasma in french intensive care unit in Afghanistan. J Trauma. 2011;71(6):1761–4 discussion 1764–5.

    PubMed  Google Scholar 

  77. Spoerke N, Zink K, Cho SD, Differding J, Muller P, Karahan A, et al. Lyophilized plasma for resuscitation in a swine model of severe injury. Arch Surg. 2009;144(9):829–34.

    CAS  PubMed  Google Scholar 

  78. Sailliol A, Martinaud C, Cap AP, Civadier C, Clavier B, Deshayes AV, et al. The evolving role of lyophilized plasma in remote damage control resuscitation in the French armed forces health service. Transfusion. 2013;53(Suppl 1):65S–71S.

    CAS  PubMed  Google Scholar 

  79. Kauvar DS, Holcomb JB, Norris GC, Hess JR. Fresh whole blood transfusion: a controversial military practice. J Trauma. 2006;61(1):181–4.

    PubMed  Google Scholar 

  80. Nessen SC, Eastridge BJ, Cronk D, Craig RM, Berseus O, Ellison R, et al. Fresh whole blood use by forward surgical teams in Afghanistan is associated with improved survival compared to component therapy without platelets. Transfusion. 2013;53(Suppl 1):107S–13S.

    PubMed  Google Scholar 

  81. Spinella PC, Perkins JG, Grathwohl KW, Beekley AC, Holcomb JB. Warm fresh whole blood is independently associated with improved survival for patients with combat-related traumatic injuries. J Trauma-Injury Infect Crit Care. 2009;66(4 Suppl):S69–76.

    Google Scholar 

  82. Perkins JG, Cap AP, Spinella PC, Shorr AF, Beekley AC, Grathwohl KW, et al. Comparison of platelet transfusion as fresh whole blood versus apheresis platelets for massively transfused combat trauma patients (CME). Transfusion. 2011;51(2):242–52.

    PubMed  Google Scholar 

  83. Cotton BA, Podbielski J, Camp E, Welch T, del Junco D, Bai Y, et al. A randomized controlled pilot trial of modified whole blood versus component therapy in severely injured patients requiring large volume transfusions. Ann Surg. 2013;258(4):527–32 discussion 532–3.

    PubMed  Google Scholar 

  84. Strandenes G, Berseus O, Cap AP, Hervig T, Reade M, Prat N, et al. Low titer group O whole blood in emergency situations. Shock. 2014;41(Suppl 1):70–5.

    PubMed  Google Scholar 

  85. Snyder EL, Whitley P, Kingsbury T, Miripol J, Tormey CA. In vitro and in vivo evaluation of a whole blood platelet-sparing leukoreduction filtration system. Transfusion. 2010;50(10):2145–51.

    CAS  PubMed  Google Scholar 

  86. Murdock AD, Berseus O, Hervig T, Strandenes G, Lunde TH. Whole blood: the future of traumatic hemorrhagic shock resuscitation. Shock. 2014;41:62–9.

    PubMed  Google Scholar 

  87. Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system part 1—receptor physiology. Crit Care. 2003;7(6):427–34.

    PubMed Central  PubMed  Google Scholar 

  88. Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system part 2—clinical physiology. Crit Care. 2004;8(1):15–23.

    PubMed Central  PubMed  Google Scholar 

  89. Anand T, Skinner R. Arginine vasopressin: the future of pressure-support resuscitation in hemorrhagic shock. J Surg Res. 2012;178(1):321–9.

    CAS  PubMed  Google Scholar 

  90. Cohn SM, DeRosa M, McCarthy J, Song J, White C, Louden C, et al. Characterizing vasopressin and other vasoactive mediators released during resuscitation of trauma patients. J Trauma Acute Care Surg. 2013;75(4):620–8.

    CAS  PubMed  Google Scholar 

  91. Westermann I, Dünser MW, Haas T, Jochberger S, Luckner G, Mayr VD, et al. Endogenous vasopressin and copeptin response in multiple trauma patients. Shock. 2007;28(6):644–9.

    CAS  PubMed  Google Scholar 

  92. Morales D, Madigan J, Cullinane S, Chen J, Heath M, Oz M, et al. Reversal by vasopressin of intractable hypotension in the late phase of hemorrhagic shock. Circulation. 1999;100(3):226–9.

    CAS  PubMed  Google Scholar 

  93. Stadlbauer KH, Wagner-Berger HG, Krismer AC, Voelckel WG, Konigsrainer A, Lindner KH, et al. Vasopressin improves survival in a porcine model of abdominal vascular injury. Crit Care. 2007;11(4):R81.

    PubMed Central  PubMed  Google Scholar 

  94. Voelckel WG, Raedler C, Wenzel V, Lindner KH, Krismer AC, Schmittinger CA, et al. Arginine vasopressin, but not epinephrine, improves survival in uncontrolled hemorrhagic shock after liver trauma in pigs. Crit Care Med. 2003;31(4):1160–5.

    CAS  PubMed  Google Scholar 

  95. Stadlbauer K, Wagner-Berger HG, Raedler C, Voelckel WG, Wenzel V, Krismer AC, et al. Vasopressin, but not fluid resuscitation, enhances survival in a liver trauma model with uncontrolled and otherwise lethal hemorrhagic shock in pigs. Anesthesiology. 2003;98(3):699–704.

    CAS  PubMed  Google Scholar 

  96. Johnson KB, Pearce FJ, Jeffreys N, McJames SW, Cluff M. Impact of vasopressin on hemodynamic and metabolic function in the decompensatory phase of hemorrhagic shock. J Cardiothorac Vasc Anesth. 2006;20(2):167–72.

    CAS  PubMed  Google Scholar 

  97. Sperry JL, Minei JP, Frankel HL, West MA, Harbrecht BG, Moore EE, et al. Early use of vasopressors after injury: caution before constriction. J Trauma. 2008;64(1):9–14.

    CAS  PubMed  Google Scholar 

  98. Plurad DS, Talving P, Lam L, Inaba K, Green D, Demetriades D. Early vasopressor use in critical injury is associated with mortality independent from volume status. J Trauma. 2011;71(3):565–70.

    PubMed  Google Scholar 

  99. Cohn SM, McCarthy J, Stewart RM, Jonas RB, Dent D, Michalek JE. Impact of low-dose vasopressin on trauma outcome: prospective randomized study. World J Surg. 2011;35(2):430–9.

    PubMed  Google Scholar 

  100. Marti-Carvajal AJ, Sola I, Gluud C, Lathyris D, Cardona AF. Human recombinant protein C for severe sepsis and septic shock in adult and paediatric patients. Cochrane Database Syst Rev. 2012;12:CD004388.

    PubMed  Google Scholar 

  101. Wilson JX, Wu F. Vitamin C in sepsis. Subcell Biochem. 2012;56:67–83.

    CAS  PubMed  Google Scholar 

  102. Schorah CJ, Downing C, Piripitsi A, Gallivan L, Al-Hazaa AH, Sanderson MJ, et al. Total vitamin C, ascorbic acid, and dehydroascorbic acid concentrations in plasma of critically ill patients. Am J Clin Nutr. 1996;63(5):760–5.

    CAS  PubMed  Google Scholar 

  103. Tanaka H, Matsuda T, Miyagantani Y, Yukioka T, Matsuda H, Shimazaki S. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch Surg. 2000;135(3):326–31.

    CAS  PubMed  Google Scholar 

  104. Collier BR, Giladi A, Dossett LA, Dyer L, Fleming SB, Cotton BA. Impact of high-dose antioxidants on outcomes in acutely injured patients. JPEN J Parenter Enteral Nutr. 2008;32(4):384–8.

    CAS  PubMed  Google Scholar 

  105. Giladi AM, Dossett LA, Fleming SB, Abumrad NN, Cotton BA. High-dose antioxidant administration is associated with a reduction in post-injury complications in critically ill trauma patients. Injury. 2011;42(1):78–82.

    PubMed  Google Scholar 

  106. Nathens AB, Neff MJ, Jurkovich GJ, Klotz P, Farver K, Ruzinski JT, et al. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg. 2002;236(6):814–22.

    PubMed Central  PubMed  Google Scholar 

  107. Van PY, Hamilton GJ, Kremenevskiy IV, Sambasivan C, Spoerke NJ, Differding JA, et al. Lyophilized plasma reconstituted with ascorbic acid suppresses inflammation and oxidative DNA damage. J Trauma. 2011;71(1):20–4 discussion 24–5.

    CAS  PubMed  Google Scholar 

  108. Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208(13):2581–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Cuenca AG, Gentile LF, Lopez MC, Ungaro R, Liu H, Xiao W, et al. Development of a genomic metric that can be rapidly used to predict clinical outcome in severely injured trauma patients. Crit Care Med. 2013;41(5):1175–85.

    CAS  PubMed  Google Scholar 

  110. Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T, et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 2008;22(10):3549–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10(1):32–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Li Y, Alam HB. Modulation of acetylation: creating a pro-survival and anti-inflammatory phenotype in lethal hemorrhagic and septic shock. J Biomed Biotechnol. 2011;2011:523481.

    PubMed Central  PubMed  Google Scholar 

  113. Shults C, Sailhamer EA, Li Y, Liu B, Tabbara M, Butt MU, et al. Surviving blood loss without fluid resuscitation. J Trauma. 2008;64(3):629–38 discussion 638–40.

    PubMed  Google Scholar 

  114. Hwabejire JO, Lu J, Liu B, Li Y, Halaweish I, Alam HB. Valproic acid for the treatment of hemorrhagic shock: a dose-optimization study. J Surg Res. 2014;186(1):363–70.

    CAS  PubMed  Google Scholar 

  115. Alam HB, Shuja F, Butt MU, Duggan M, Li Y, Zacharias N, et al. Surviving blood loss without blood transfusion in a swine poly-trauma model. Surgery. 2009;146(2):325–33.

    PubMed  Google Scholar 

  116. Causey MW, Miller S, Hoffer Z, Hempel J, Stallings JD, Jin G, et al. Beneficial effects of histone deacetylase inhibition with severe hemorrhage andischemia-reperfusion injury. J Surg Res. 2013;184(1):533–40.

    CAS  PubMed  Google Scholar 

  117. Causey MW, Salgar S, Singh N, Martin M, Stallings JD. Valproic acid reversed pathologic endothelial cell gene expression profile associated with ischemia-reperfusion injury in a swine hemorrhagic shock model. J Vasc Surg. 2012;55(4):1096.e51–1103.e51.

    Google Scholar 

  118. Jin G, Duggan M, Imam A, Demoya MA, Sillesen M, Hwabejire J, et al. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury. J Trauma Acute Care Surg. 2012;73(6):1461–70.

    PubMed  Google Scholar 

  119. Imam AM, Jin G, Duggan M, Sillesen M, Hwabejire JO, Jepsen CH, et al. Synergistic effects of fresh frozen plasma and valproic acid treatment in a combined model of traumatic brain injury and hemorrhagic shock. Surgery. 2013;154(2):388–96.

    PubMed  Google Scholar 

  120. Nelson DW, Porta CR, McVay DP, Salgar SK, Martin MJ. Effects of histone deacetylase inhibition on 24-hour survival and end-organ injury in a porcine trauma model: a prospective, randomized trial. J Trauma Acute Care Surg. 2013;75(6):1031–9.

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

David Martin and Martin Schreiber declare that they have no conflict of interest.

Ethical standards

This review article does not present any original data from studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. T. Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, D.T., Schreiber, M.A. Modern resuscitation of hemorrhagic shock: what is on the horizon?. Eur J Trauma Emerg Surg 40, 641–656 (2014). https://doi.org/10.1007/s00068-014-0416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-014-0416-5

Keywords

Navigation