Skip to main content
Log in

Evaluating dosimetric parameters predictive of hematologic toxicity in cervical cancer patients undergoing definitive pelvic chemoradiotherapy

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

We performed a retrospective study of cervical cancer pelvic radiotherapy plans to explore dosimetric parameters predictive of hematologic toxicity (HT), with specific interest in evaluating metabolic parameters and identifying the best predictive model.

Methods

Active marrow was retroactively contoured as pelvic bone with SUV > mean on 18F-FDG-PET. “Highly active” marrow was contoured as the hottest 10–14% volume of active marrow. Pelvic bone contour was segmented into lumbosacral, iliac crest, and lower pelvis. Predictors of HT were evaluated using logistic regression and repeated measures modeling.

Results

One hundred women were evaluated from 2009 to 2020. The plurality/majority had stage IIIC1 disease (38%) and underwent IMRT (88%) with pelvic field alone (72%). The majority received weekly cisplatin (78%), and 82% completed at least five cycles. The most common HT was leukopenia (grade 2+: 68%). Predictors of grade 2+ and 3+ HT were baseline WBC (p < 0.001), and 10- and 20-Gy dosimetric parameters to the active marrow, highly active marrow, and pelvic bone. The best predictive model of leukocyte trajectory included baseline WBC (p < 0.001), highly active marrow V20 (p < 0.001), and interactions of baseline WBC with time (p < 0.001) and highly active marrow V20 (p < 0.001), such that those with low baseline WBC experienced the greatest impact of highly active marrow V20.

Conclusion

Baseline WBC was highly predictive of HT; dosimetric predictors included dose to the active marrow, highly active marrow, and pelvic bone, with the greatest impact from V20 to the highly active marrow, particularly in women with low baseline WBC. Future studies should consider incorporating baseline WBC and limiting dose to the most highly active marrow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arbyn M et al (2020) Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health 8(2):e191–e203

    Article  Google Scholar 

  2. Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration (2008) Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol 26(35):5802–5812

    Article  Google Scholar 

  3. Hayman JA et al (2011) Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging. Int J Radiat Oncol Biol Phys 79(3):847–852

    Article  CAS  Google Scholar 

  4. Mell LK et al (2017) Bone marrow-sparing intensity modulated radiation therapy with concurrent cisplatin for stage IB-IVA cervical cancer: an international multicenter phase II clinical trial (INTERTECC-2). Int J Radiat Oncol Biol Phys 97(3):536–545

    Article  Google Scholar 

  5. Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration (2008) Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol 26(35):5802–5812

    Article  Google Scholar 

  6. Keys HM et al (1999) Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N Engl J Med 340(15):1154–1161

    Article  CAS  Google Scholar 

  7. de Boer SM et al (2018) Adjuvant chemoradiotherapy versus radiotherapy alone for women with high-risk endometrial cancer (PORTEC-3): final results of an international, open-label, multicentre, randomised, phase 3 trial. Lancet Oncol 19(3):295–309

    Article  Google Scholar 

  8. de Boer SM et al (2019) Adjuvant chemoradiotherapy versus radiotherapy alone in women with high-risk endometrial cancer (PORTEC-3): patterns of recurrence and post-hoc survival analysis of a randomised phase 3 trial. Lancet Oncol 20(9):1273–1285

    Article  Google Scholar 

  9. David JM et al (2019) 18F-FDG PET predicts hematologic toxicity in patients with locally advanced anal cancer treated with chemoradiation. Adv Radiat Oncol 4(4):613–622

    Article  Google Scholar 

  10. Yeung AR et al (2020) Improvement in patient-reported outcomes with intensity-modulated radiotherapy (RT) compared with standard RT: a report from the NRG oncology RTOG 1203 study. J Clin Oncol 38(15):1685–1692

    Article  Google Scholar 

  11. Chopra S et al (2020) Phase III randomized trial of postoperative adjuvant conventional radiation (3DCRT) versus image guided intensity modulated radiotherapy (IG-IMRT) in cervical cancer (PARCER): final analysis. American Society for Radiation Oncology (ASTRO) 2020 Annual Meeting.

    Book  Google Scholar 

  12. Zhou YM et al (2018) The absolute volume of PET-defined, active bone marrow spared predicts for high grade hematologic toxicity in cervical cancer patients undergoing chemoradiation. Clin Transl Oncol 20(6):713–718

    Article  CAS  Google Scholar 

  13. Rose BS et al (2012) Correlation between radiation dose to ¹8F‑FDG-PET defined active bone marrow subregions and acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys 83(4):1185–1191

    Article  CAS  Google Scholar 

  14. Huang J et al (2020) Pelvic bone marrow sparing intensity modulated radiotherapy reduces the incidence of the hematologic toxicity of patients with cervical cancer receiving concurrent chemoradiotherapy: a single-center prospective randomized controlled trial. Radiat Oncol 15(1):180

    Article  Google Scholar 

  15. Mell LK et al (2006) Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy. Int J Radiat Oncol Biol Phys 66(5):1356–1365

    Article  Google Scholar 

  16. Freese C et al (2018) The volume of PET-defined, active bone marrow spared predicts acute hematologic toxicities in anal cancer patients receiving concurrent chemoradiotherapy. Acta Oncol 57(5):683–686

    Article  Google Scholar 

  17. Kumar T et al (2019) Correlation between pelvic bone marrow radiation dose and acute hematological toxicity in cervical cancer patients treated with concurrent chemoradiation. Cancer Manag Res 11:6285–6297

    Article  CAS  Google Scholar 

  18. Lee AY et al (2017) Hematologic nadirs during chemoradiation for anal cancer: temporal characterization and dosimetric predictors. Int J Radiat Oncol Biol Phys 97(2):306–312

    Article  Google Scholar 

  19. Burt LM et al (2021) Cervix cancer in sub-saharan Africa: an assessment of cervical cancer management. JCO Glob Oncol 7:173–182

    Article  Google Scholar 

  20. Lim K et al (2011) Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys 79(2):348–355

    Article  Google Scholar 

  21. Kozak MM et al (2019) Less than whole uterus irradiation for locally advanced cervical cancer maintains locoregional control and decreases radiation dose to bowel. Pract Radiat Oncol 9(2):e164–e171

    Article  Google Scholar 

  22. Mell LK et al (2008) Association between bone marrow dosimetric parameters and acute hematologic toxicity in anal cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 70(5):1431–1437

    Article  Google Scholar 

  23. Chen SY, Feng Z, Yi X (2017) A general introduction to adjustment for multiple comparisons. J Thorac Dis 9(6):1725–1729

    Article  Google Scholar 

  24. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Statist Soc B 58(1):267

    Google Scholar 

  25. Zhu H et al (2015) Longitudinal study of acute haematologic toxicity in cervical cancer patients treated with chemoradiotherapy. J Med Imaging Radiat Oncol 59(3):386–393 (quiz 394)

    Article  Google Scholar 

  26. Surveillance, Epidemiology, and End Results (SEER) Program (2021) SEER 18 2011–2017. https://seer.cancer.gov/statfacts/html/cervix.html. Accessed 04.2021

  27. Yang FE et al (1995) Analysis of weekly complete blood counts in patients receiving standard fractionated partial body radiation therapy. Int J Radiat Oncol Biol Phys 33(3):617–617

    CAS  PubMed  Google Scholar 

  28. Murata Y et al (2006) Correlations between 18F-FDG uptake by bone marrow and hematological parameters: measurements by PET/CT. Nucl Med Biol 33(8):999–1004

    Article  CAS  Google Scholar 

  29. Kershah S et al (2013) Comparison of standardized uptake values in normal structures between PET/CT and PET/MRI in an oncology patient population. Mol Imaging Biol 15(6):776–785

    Article  Google Scholar 

  30. Albuquerque K et al (2011) Radiation-related predictors of hematologic toxicity after concurrent chemoradiation for cervical cancer and implications for bone marrow-sparing pelvic IMRT. Int J Radiat Oncol Biol Phys 79(4):1043–1047

    Article  Google Scholar 

  31. Klopp AH et al (2013) Hematologic toxicity in RTOG 0418: a phase 2 study of postoperative IMRT for gynecologic cancer. Int J Radiat Oncol Biol Phys 86(1):83–90

    Article  CAS  Google Scholar 

  32. Mell LK et al (2008) Dosimetric comparison of bone marrow-sparing intensity-modulated radiotherapy versus conventional techniques for treatment of cervical cancer. Int J Radiat Oncol Biol Phys 71(5):1504–1510

    Article  Google Scholar 

  33. Rose BS et al (2011) Normal tissue complication probability modeling of acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys 79(3):800–807

    Article  CAS  Google Scholar 

  34. Harrell FE et al (1984) Regression modelling strategies for improved prognostic prediction. Stat Med 3(2):143–152

    Article  Google Scholar 

  35. Ashbeck EL, Bell ML (2016) Single time point comparisons in longitudinal randomized controlled trials: power and bias in the presence of missing data. BMC Med Res Methodol 16:43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ER: data curation, formal analysis, manuscript writing, and editing; RvE: formal analysis; JL: technical guidance with data curation; DH: conceptualization/study design, manuscript review/editing; EK: conceptualization/study design, manuscript review/editing.

Corresponding author

Correspondence to Elham Rahimy MD.

Ethics declarations

Conflict of interest

E. Rahimy, R. von Eyben, J. Lewis, D. Hristov, and E. Kidd declare that they have no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimy, E., von Eyben, R., Lewis, J. et al. Evaluating dosimetric parameters predictive of hematologic toxicity in cervical cancer patients undergoing definitive pelvic chemoradiotherapy. Strahlenther Onkol 198, 773–782 (2022). https://doi.org/10.1007/s00066-021-01885-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-021-01885-z

Keywords

Navigation