Skip to main content
Log in

Ferumoxtran-10 MR Lymphography for Target Definition and Follow-up in a Patient Undergoing Image-Guided, Dose-Escalated Radiotherapy of Lymph Nodes upon PSA Relapse

Ferumoxtran-10-MR-Lymphographie zur Zieldefinition und Therapiekontrolle bei einem Patienten mit bildgeführter dosiseskalierter Strahlentherapie der Lymphknoten bei PSA-Rezidiv

  • Short Communication
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose:

Evaluation of the lymph node situation in patients with prostate cancer is essential for effective radiotherapy. Using magnet resonance imaging (MRI) of the lymph nodes with ferumoxtran-10 (MR lymphography), it is possible to detect lymph node metastasis. We present our initial experience with ferumoxtran-10 MR lymphography as the basis for image-guided, doseescalated lymph node radiotherapy and for early follow-up after radiotherapy.

Patients and Methods:

A patient with suspicion for lymph node metastasis after radical prostatectomy was examined with MR lymphography with the lymph node-specific contrast media ferumoxtran-10. Radiotherapy was performed as intensity-modulated radiotherapy with a total dose of 44 Gy to the whole lymphatic drainage, 60 Gy to the area of affected lymph nodes, 71 Gy to the prostate bed, and 75 Gy to the anastomosis region. 8 weeks after completion of radiotherapy, a follow-up MR lymphography with ferumoxtran-10 was performed.

Results:

In the first MRI with ferumoxtran-10, 5 metastatic lymph nodes were found in the iliac region. The scan 8 weeks postradiotherapy no longer showed lymph nodes suspicious for metastases. PSA (prostate-specific antigen) decreased from 2.06 ng/ml pretherapeutically to 0.02 ng/ml at 2 weeks after treatment and was no longer detectable at 8 months after treatment.

Conclusions:

Lymph node staging with ferumoxtran-10 and subsequent dose escalation with intensity-modulated radiotherapy led to the elimination of positive lymph nodes and a decrease in the PSA value.

Zusammenfassung

Ziel:

Die Evaluation des Lymphknotenstatus bei Patienten mit Prostatakarzinom ist für eine erfolgreiche Strahlentherapie notwendig. Eine Möglichkeit zur Erkennung von Lymphknotenmetastasen stellt die Magnetresonanztomographie der Lymphknoten mittels Ferumoxtran-10 dar. Wir stellen erste Erfahrungen mit Ferumoxtran-10 als Grundlage für eine bildgeführte Strahlentherapie der Lymphabflusswege vor.

Patienten und Methodik:

Ein Patient mit Verdacht auf Lymphknotenmetastasen nach radikaler Prostatektomie wurde mittels Magnetresonanztomographie der Lymphknoten mit dem lymphknotenspezifischen Kontrastmittel Ferumoxtran-10 untersucht (Tabelle 1). Eine Intensitäts-modulierte Strahlentherapie wurde mit folgender Gesamtdosis durchgeführt: 44 Gy gesamte Lymphabflusswege, 60 Gy metastatische Lymphknoten, 71 Gy Prostataloge und 75 Gy Anastomosenregion (Abbildung 2). 8 Wochen nach Beendigung der Strahlentherapie wurde eine erneute Magnetresonanztomographie der Lymphknoten zur Kontrolle durchgeführt.

Ergebnisse:

In der ersten Magnetresonanztomographie der Lymphkntoten zeigten sich 5 metastatische Lymphknoten iliakal (Abbildung 1a und 1b). In der Kontrolluntersuchung 8 Wochen nach Therapie konnten keine verdächtigen Lymphknoten mehr nachgewiesen werden (Abbildung 3a und 3b, Tabelle 2). Der PSA-Wert (prostataspezifisches Antigen) sank von 2,06 ng/ml vor Therapie auf 0,02 ng/ml 2 Wochen nach Therapie und war 8 Monate nach Therapie nicht mehr messbar.

Schlussfolgerung:

Die Intensitätsmodulierte Strahlentherapie mit gesteigerter Dosis auf Grundlage des Lymphknotenstaging mittels Ferumoxtran-10 führte zu einer Eliminierung metastatischer Lymphknoten und einem Absinken des PSA-Wertes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizer AA, Yu JB, McKeon AM, et al. Whole pelvic radiotherapy versus prostate only radiotherapy in the management of locally advanced or aggressive prostate adenocarcinoma. Int J Radiat Oncol Biol Phys 2009;75: 1344–9

    Article  PubMed  Google Scholar 

  2. Ashman JB, Zelefsky MJ, Hunt MS, et al. Whole pelvic radiotherapy for prostate cancer using 3D conformal and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2005;63:765–71

    Article  PubMed  Google Scholar 

  3. Barentsz JO, Futterer JJ, Takahashi S. Use of ultrasmall superparamagnetic iron oxide in lymph node MR imaging in prostate cancer patients. Eur J Radiol 2007;63:369–72

    Article  PubMed  Google Scholar 

  4. Briganti A, Blute ML, Eastham JH, et al. Pelvic lymph node dissection in prostate cancer. Eur Urol 2009;55:1251–65

    Article  PubMed  Google Scholar 

  5. Dinniwell R, Chan P, Czarnota G, et al. Pelvic lymph node topography for radiotherapy treatment planning from ferumoxtran-10 contrast-enhanced magnetic resonance imaging. Int J Radiat Oncol Biol Phys 2009;74: 844–51

    Article  PubMed  Google Scholar 

  6. Dirix P, Haustermans K, Junius S, et al. The role of whole pelvic radiotherapy in locally advanced prostate cancer. Radiother Oncol 2006; 79:1–14

    Article  PubMed  Google Scholar 

  7. Dolezel M, Odrazka K, Vaculikova M, et al. Dose escalation in prostate radiotherapy up to 82 Gy using simultaneous integrated boost: direct comparison of acute and late toxicity with 3D-CRT 74 Gy and IMRT 78 Gy. Strahlenther Onkol 2010;186:197–202

    Article  PubMed  Google Scholar 

  8. Ganswindt U, Paulsen F, Corvin S, et al. Optimized coverage of high-risk adjuvant lymph node areas in prostate cancer using a sentinel node-based, intensity-modulated radiation therapy technique. Int J Radiat Oncol Biol Phys 2007;67:347–55

    Article  PubMed  Google Scholar 

  9. Goldner G, Bombosch V, Geinitz H, et al. Moderate risk-adapted dose escalation with three-dimensional conformal radiotherapy of localized prostate cancer from 70 to 74 Gy. First report on 5-year morbidity and biochemical control from a prospective Austrian-German multicenter phase II trial. Strahlenther Onkol 2009;185:94–100

    Article  PubMed  Google Scholar 

  10. Goldner G, Dimopoulos J, Kirisits C, et al. Moderate dose escalation in three-dimensional conformal localized prostate cancer radiotherapy: single-institutional experience in 398 patients comparing 66 Gy versus 70 Gy versus 74 Gy. Strahlenther Onkol 2009;185:438–45

    Article  PubMed  Google Scholar 

  11. Goldner G, Potter R. Radiotherapy in lymph node-positive prostate cancer patients—a potential cure? Single institutional experience regarding out-come and side effects. Front Radiat Ther Oncol 2008;41:68–76

    Article  PubMed  Google Scholar 

  12. Hanks GE, Buzydlowski J, Sause WT, et al. Ten-year outcomes for pathologic node-positive patients treated in RTOG 75-06. Int J Radiat Oncol Biol Phys 1998;40:765–8

    Article  PubMed  CAS  Google Scholar 

  13. Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003;348:2491–9

    Article  PubMed  Google Scholar 

  14. Heidenreich A, Varga Z, Von Knobloch R. Extended pelvic lymphadenectomy in patients undergoing radical prostatectomy: high incidence of lymph node metastasis. J Urol 2002;167:1681–6

    Article  PubMed  Google Scholar 

  15. Holl G, Dorn R, Wengenmair H, et al. Validation of sentinel lymph node dissection in prostate cancer: experience in more than 2,000 patients. Eur J Nucl Med Mol Imaging 2009;36:1377–82

    Article  PubMed  CAS  Google Scholar 

  16. Hyndman ME, Mullins JK, Pavlovich CP. Pelvic node dissection in prostate cancer: extended, limited, or not at all? Curr Opin Urol 2010;20:211–7

    Article  PubMed  Google Scholar 

  17. Lawton CA, DeSilvio M, Roach M, 3rd, et al. An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94-13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys 2007;69:646–55

    Article  PubMed  Google Scholar 

  18. Nguyen PL, Chen MH, Hoffman KE, et al. Predicting the risk of pelvic node involvement among men with prostate cancer in the contemporary era. Int J Radiat Oncol Biol Phys 2009;74:104–9

    Article  PubMed  Google Scholar 

  19. Pommier P, Chabaud S, Lagrange JL, et al. Is there a role for pelvic irradiation in localized prostate adenocarcinoma? Preliminary results of GETUG-01. J Clin Oncol 2007;25:5366–73

    Article  PubMed  Google Scholar 

  20. Roach M, 3rd, DeSilvio M, Lawton C, et al. Phase III trial comparing wholepelvic versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413. J Clin Oncol 2003;21:1904–11

    Article  PubMed  Google Scholar 

  21. Ross RW, Zietman AL, Xie W, et al. Lymphotropic nanoparticle-enhanced magnetic resonance imaging (LNMRI) identifies occult lymph node metastases in prostate cancer patients prior to salvage radiation therapy. Clin Imaging 2009;33:301–5

    Article  PubMed  Google Scholar 

  22. Shih HA, Harisinghani M, Zietman AL, et al. Mapping of nodal disease in locally advanced prostate cancer: rethinking the clinical target volume for pelvic nodal irradiation based on vascular rather than bony anatomy. Int J Radiat Oncol Biol Phys 2005;63:1262–9

    Article  PubMed  Google Scholar 

  23. Steiner U, Wiegel T, Miller K. [Lymph node positive prostate carcinoma. A case for radiotherapy]. Urologe A 1999;38:349–52

    Article  PubMed  CAS  Google Scholar 

  24. Thalmann GN. Positive lymph nodes at lymphadenectomy for prostate cancer: where do we set the tiller? Eur Urol 2009;55:271–4

    Article  PubMed  Google Scholar 

  25. Treutwein M, Hipp M, Kolbl O, et al. IMRT of prostate cancer: a comparison of fluence optimization with sequential segmentation and direct step-and-shoot optimization. Strahlenther Onkol 2009;185:379–83

    Article  PubMed  Google Scholar 

  26. Valicenti R, Lu J, Pilepich M, et al. Survival advantage from higher-dose radiation therapy for clinically localized prostate cancer treated on the Radiation Therapy Oncology Group trials. J Clin Oncol 2000;18:2740–6

    PubMed  CAS  Google Scholar 

  27. Viani GA, Stefano EJ, Afonso SL. Higher-than-conventional radiation doses in localized prostate cancer treatment: a metaanalysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys 2009;74:1405–18

    Article  PubMed  Google Scholar 

  28. Wang-Chesebro A, Xia P, et al. Intensity-modulated radiotherapy improves lymph node coverage and dose to critical structures compared with threedimensional conformal radiation therapy in clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 2006;66:654–62

    Article  PubMed  Google Scholar 

  29. Wang D, Lawton C. Pelvic lymph node irradiation for prostate cancer: who, why, and when? Semin Radiat Oncol 2008;18:35–40

    Article  PubMed  CAS  Google Scholar 

  30. Zelefsky MJ, Fuks Z, Hunt M, et al. High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 2002;53:1111–6

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja M. Weidner.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidner, A.M., van Lin, E.N.J.T., Dinter, D.J. et al. Ferumoxtran-10 MR Lymphography for Target Definition and Follow-up in a Patient Undergoing Image-Guided, Dose-Escalated Radiotherapy of Lymph Nodes upon PSA Relapse. Strahlenther Onkol 187, 206–212 (2011). https://doi.org/10.1007/s00066-010-2195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-010-2195-1

Key Words

Schlüsselwörter

Navigation