Skip to main content
Log in

Nontraumatic avascular necrosis of the femoral head

Arthroscopic and navigation-supported core decompression

Atraumatische avaskuläre Femurkopfnekrose

Arthroskopisch und navigationsgestützte Hüftkopfanbohrung

  • Surgical Techniques
  • Published:
Operative Orthopädie und Traumatologie Aims and scope Submit manuscript

Abstract

Objective

The aim is to address core decompression and pathologies of the femoral head, treating them during the same procedure. Furthermore, radiation exposure will be reduced.

Indications

Femoral head necrosis ARCO (Association Research Circulation Osseous) stages I–III.

Contraindications

Progressive femoral head necrosis as ARCO stages IIIC–IV.

Surgical technique

Arthroscopically navigated core decompression of the femoral head using an established optoelectronic system with fluoro-free software module. First, hip joint arthroscopy was performed and further pathologies were treated. Second, core decompression was navigated by a navigation pointer and drill sleeve to reach the correct target point. After visualization, the procedure is repeated 3–5 times.

Postoperative management

Limited weight bearing of the operated leg (20 kg) for 10–14 days. Active or passive continuous motion machine for 4 weeks. Adjuvant postoperative indomethacin therapy for 10 days to reduce pain and bone marrow edema.

Results

From May 2018 to January 2019, 7 patients (male = 4; 40 ± 9 years) underwent arthroscopically navigated core decompression with 2 (29%) and 5 (71%) patients being classified as ARCO II and III, respectively. Preoperatively, all patients reported load-dependent pain. In all cases, we could identify synovitis, which results in soft tissue release and synovectomy. Furthermore, 4 of 7 patients had an additional labrum lesion, which is addressed by refixation or shrinking.

Discussion

Compared to the conventional technique, this fluoro-free navigation procedure allows more precise drilling. Moreover, additional pathologies, as found in all our cases, could be simultaneously addressed. The intraoperative radiation exposure for the patient and surgical team could also be reduced. Although arthroscopically assisted core decompression requires more preparation time, there are advantages over conventional surgery.

Zusammenfassung

Operationsziel

Funktionserhalt der Hüfte durch Hüftkopfanbohrung sowie die Behandlung von Begleitpathologien durch Hüftarthroskopie und Reduktion der intraoperativen Strahlenbelastung.

Indikationen

Hüftkopfnekrose Stadium ARCO (Association Research Circulation Osseous) I–III.

Kontraindikationen

Fortgeschrittene Hüftkopfnekrose ARCO IIIC–IV.

Operationstechnik

Arthroskopisch gestützte Hüftkopfanbohrung mit optoelektronischem System ohne zusätzliche Strahlenbelastung. Zuerst Hüftgelenkarthroskopie und Behandlung etwaiger Begleitpathologien. Danach navigierte Hüftkopfanbohrung, wobei ein Navigationspointer arthroskopisch an den nekrotischen Hüftkopfanteil eingebracht wird. Visualisierung durch gleichzeitiges Einbringen einer navigierten Bohrhülse, sodass die Navigationsgeräte die exakte Bohrrichtung ohne zusätzliche Strahlenbelastung visuell am Navigationsmonitor darstellen. Das Prozedere wird 3‑ bis 5‑mal durchgeführt.

Postoperatives Weiterbehandlung

Teilbelastung des operierten Beins mit 20 kg für 10–14 Tage. Passive oder aktive Bewegungsmaschine für 4 Wochen. Adjuvante Indometacin-Therapie für 10 Tage zur Reduktion von Schmerzen und Knochenmarködem.

Ergebnisse

Von Mai bis Dezember 2018 wurden 7 Patienten (m = 4; 40 ± 9 Jahre) durch eine arthroskopisch gestützte navigierte Hüftkopfanbohrung behandelt, wobei 2 Patienten ARCO II (29 %) und 5 Patienten ARCO III (71 %) hatten. Präoperativ litten alle Patienten unter belastungsabhängigem Hüftschmerz. In allen Fällen zeigte sich eine Synovialitis, die mit Synovektomie und Weichteilrelease adressiert wurde. Zudem hatten 4/7 Patienten eine zusätzliche therapiebedürftige Labrumläsion.

Diskussion

Das Verfahren ermöglicht im Vergleich zur konventionellen Operationstechnik eine präzisere Hüftkopfanbohrung. Zudem konnten vorliegende Pathologien, die in allen Fällen vorhanden waren, durch die Hüftgelenkarthroskopie gleichzeitig behandelt werden. Die intraoperative Strahlenbelastung für Patient und Operationsteam wurde deutlich reduziert. Obwohl die arthroskopisch gestützte Hüftkopfanbohrung deutlich mehr Vorbereitungszeit benötigt, bietet sie Vorteile gegenüber der konventionellen Operationstechnik.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Beckmann J, Schmidt T, Schaumburger J, Rath B, Lüring C, Tingart M, Grifka J (2013) Infusion, core decompression, or infusion following core decompression in the treatment of bone edema syndrome and early avascular osteonecrosis of the femoral head. Rheumatol Int 33(6):1561–1565

    Article  Google Scholar 

  2. Beckmann J, Goetz J, Baethis H, Kalteis T, Grifka J, Perlick L (2006) Precision of computer assisted core decompression drilling of the femoral head. Arch Orthop Trauma Surg 126:374–379

    Article  CAS  Google Scholar 

  3. Betsch M, Tingart M, Driesen A, Quack V, Rath B (2018) Endoprothetik bei aspetischer Hüftkopfnekrose. Orthopäde 47:751–756

    Article  CAS  Google Scholar 

  4. Bohndorf K, Roth A (2018) Bildgebung und Klassifikation der aseptischen Hüftkopfnekrose. Orthopäde 47:729–734

    Article  CAS  Google Scholar 

  5. Calori GM, Mazza E, Colombo A, Mazzola S, Colombo M (2017) Core decompression and biotechnologies in the treatment af avascular necrosis of the femoral head. EFORT Open Rev 2:41–50

    Article  Google Scholar 

  6. Citak M, Kendoff D, Kfuri M, Pearle A, Krettek C, Hüfner T (2007) Accuracy analysis of iso-C3D versus fluoroscopy-based navigated retrograde drilling of osteochondral lesions: a pilot study. J Bone Joint Surg Br 89(3):323–326

    Article  CAS  Google Scholar 

  7. Clarke MT, Arora A, Villar R (2003) Hip arthroscopy: complications in 1054 cases. Clin Orthop Relat Res 406:84–88

    Article  Google Scholar 

  8. Delling G (2007) Pathohistologie der Femurkopfnekrose. Orthopade 36(5):404–413

    Article  CAS  Google Scholar 

  9. Ellenrieder M, Tischer T, Kreuz P, Fröhlich S, Fritsche A, Mittelmeier W (2013) Arthroskopisch gestützte Behandlung der aspetischen Hüftkopfnekrose. Oper Orthop Traumatol 25:85–94

    Article  CAS  Google Scholar 

  10. Gras F, Marintschev I, Müller M, Klos K, Lindner R, Mückley T, Hofmann GO (2010) Arthroscopic-controlled navigation for retrograde drilling of osteochondral lesions of the talus. Foot Ankle Int 31(10):897–904

    Article  Google Scholar 

  11. Gras F, Marintschev I, Kahler DM, Klos K, Mückley T, Hofmann GO (2011) Fluoro-free navigated retrograde drilling of osteochondral lesions. Knee Surg Sports Traumatol Arthrosc 19(1):55–59

    Article  Google Scholar 

  12. Guadilla J, Fiz N, Andia I (2012) Arthroscopic management and platelet-rich plasma therapy. Knee Surg Sports Traumatol Arthrosc 20:393–398

    Article  Google Scholar 

  13. Hoffmann M, Petersen JP, Schroder M, Hartel M, Kammal M, Rueger JM, Ruecker AH (2012) Accuracy analysis of a novel electromagnetic navigation procedure versus a standard fluoroscopic method for retrograde drilling of osteochondritis dissecans lesions of the knee. Am J Sports Med 40(4):920–926

    Article  Google Scholar 

  14. Hoffmann M, Hartel M, Schroeder M, Reinsch O, Spiro AS, Ruecker AH, Grossterlinden L, Briem D, Rueger JM, Petersen JP (2014) Electromagnetic navigation provides high accuracy for transcoracoid–transclavicular drilling. Knee Surg Sports Traumatol Arthrosc 22:2237–2242

    Article  Google Scholar 

  15. Hoffmann M, Schroeder M, Hartel M, Korecki M, Rueger JM, Nüchtern JV, Lehmann W, Petersen JP (2014) Accuracy analysis of a novel electromagnetic navigation procedure versus a standard minimally invasive method for arthroscopically assisted acromioclavicular joint reconstructions. Arthroscopy 30(8):928–935

    Article  Google Scholar 

  16. Joice M, Vasileiadis GI, Amanatullah DF (2018) Non-steroidal anti-inflammatory drugs for heterotopic ossification prophylaxis after total hip arthroplasty. Bone Joint J 100-B(7):915–922

    Article  CAS  Google Scholar 

  17. Lavernia CJ, Sierra RJ (2000) Core decompression in atraumatic osteonecrosis of the hip. J Arthroplasty 15(2):171–178

    Article  CAS  Google Scholar 

  18. Marker DR, Seyler TM, Ulrich SD, Srivastava S, Mont MA (2008) Do modern techniques improve core decompression outcomes for hip osteonecrosis? Clin Orthop Relat Res 466:1093–1103

    Article  Google Scholar 

  19. Mei-Dan O, Kraeutler MJ, Garabekyan T, Goodrich JA, Young DA (2018) Hip distraction without perineal post. Am J Sports Med 46(3):632–641

    Article  Google Scholar 

  20. Müller M, Gras F, Marintschev I, Mückley T, Hofmann GO (2009) Radiation- and reference base-free navigation procedure for placement of instruments and implants: application to retrograde drilling of osteochondral lesions of the knee joint. Comput Aided Surg 4(4–6):109–116

    Article  Google Scholar 

  21. Pierannunzii L (2012) Endoscopic and arthroscopic assistance in femoral head core decompression. Arthrosc Tech 1(2):225–230

    Article  Google Scholar 

  22. Pierce TP, Jauregui JJ, Elmallah RK, Lavernia CJ, Mont MA, Nace J (2015) A current review of core decompression in the treatment of osteonecrosis of the femoral head. Curr Rev Musculoskelet Med 8:228–232

    Article  Google Scholar 

  23. Roth A, Beckmann J, Bohndorf K, Fischer A, Heiß C, Kenn W, Breusch SJ (2016) S3-Guideline non-traumatic adult femoral head necrosis. Arch Orthop Trauma Surg 136:165–174

    Article  CAS  Google Scholar 

  24. Ruch DS, Satterfield W (1998) The use of arthroscopy to document accurate position of core decompression of the hip. Arthroscopy 14(6):617–619

    Article  CAS  Google Scholar 

  25. Stumpp P, Roth A (2018) Das Knochenmarködem-Differenzialdiagnose zur aseptischen Hüftkopfnekrose. Orthopade 47:717–721

    Article  CAS  Google Scholar 

  26. Theopold J, Marquass B, von Dercks N, Mütze M, Henkelmann R, Josten C, Hepp P (2015) Arthroscopically guided navigation for repair of acromioclavicular joint dislocations: a safe technique with reduced intraoperative radiation exposure. Patient Saf Surg 9:41

    Article  Google Scholar 

  27. Theopold J, Weihs K, Löffler S, Marquass B, von Dercks N, Josten C, Hepp P (2015) Image-free navigated coracoclavicular drilling for the repair of acromioclavicular joint dislocation: a cadaver study. Arch Orthop Trauma Surg 135:1077–1108

    Article  Google Scholar 

  28. Zalvras CG, Liebermann JR (2014) Osteonecrosis of the femoral head: evaluation and treatment. J Am Acad Orthop Surg 22:455–464

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Theopold.

Ethics declarations

Conflict of interest

J. Theopold, S. Armonies, P. Pieroh, P. Hepp and A. Roth declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Additional information

Editor

M. Tingart, Aachen

Illustrator

R. Himmelhan, Mannheim

The authors J. Theopold and S. Armonies contributed equally to this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theopold, J., Armonies, S., Pieroh, P. et al. Nontraumatic avascular necrosis of the femoral head. Oper Orthop Traumatol 32, 107–115 (2020). https://doi.org/10.1007/s00064-019-00643-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00064-019-00643-w

Keywords

Schlüsselwörter

Navigation