Skip to main content
Log in

Ventrikuläre Langzeitunterstützung mit implantierbaren kontinuierlichen Flusspumpen

Auf dem Weg zum Goldstandard in der Therapie der terminalen Herzinsuffizienz

Ventricular long-term support with implantable continuous flow pumps

On the way to a gold standard in the therapy of terminal heart failure

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die mechanische Kreislaufunterstützung stellt heute eine wichtige Option in der Behandlung von Patienten mit fortgeschrittener Herzinsuffizienz dar. Einst als Überbrückung zur Herztransplantation entwickelt, ist sie heute eine wertvolle Möglichkeit der dauerhaften Unterstützung bei Patienten, bei denen einen Herztransplantation aufgrund von Kontraindikationen oder mangels Organverfügbarkeit ausscheidet. Darüber hinaus dient sie zur Überbrückung bis zur myokardialen Erholung und Explantation. Die Anzahl der Implantationen linksventrikulärer Unterstützungssysteme (LVAD) ist in den vergangenen Jahren deutlich angestiegen, und die Hälfte dieser Implantationen wird bereits heute in Nichttransplantationszentren durchgeführt. Diese Entwicklung macht es notwendig, dass jeder praktisch tätige Arzt mit den Grundprinzipien der mechanischen Kreislaufunterstützung und mit möglichen Komplikationen vertraut ist. Der vorliegende Artikel fasst den aktuellen Stand der Technik und Behandlung von Patienten mit ventrikulären Langzeitunterstützungssystemen zusammen.

Abstract

Mechanical circulatory support nowadays represents an important option in the treatment of patients with advanced heart insufficiency. Once developed as a bridging to heart transplantation, it is now a valuable option for permanent support in patients for whom a heart transplantation is not possible due to contraindications or a lack of available organs. Furthermore, it can be used as a bridging to myocardial recovery and explantation. The number of implantations of left ventricular assist devices (LVAD) has clearly increased in recent years and approximately one half of these implantations is already carried out in centers not specialized in transplantations. This development necessitates that every practicing physician is aware of the basic principles of mechanical circulatory support and with the possible complications. This article gives a summary of the current state of the technology and treatment of patients with long-term VADs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Notes

  1. Die International Society for Heart and Lung Transplantation hat Richtlinien für die Behandlung von Patienten mit mechanischen Kreislaufunterstützungssystemen [22] herausgegeben. Die Empfehlungen in diesem Abschnitt basieren auf dieser Richtlinie.

Literatur

  1. Lund LH, Edwards LB, Kucheryavaya AY et al (2014) The registry of the International Society for Heart and Lung Transplantation: thirty-first official adult heart transplant report – 2014; focus theme: retransplantation. J Heart Lung Transplant 33(10):996–1008

    Article  PubMed  Google Scholar 

  2. Funkat A, Beckmann A, Lewandowski J et al (2014) Cardiac surgery in Germany during 2013: a report on behalf of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg 62(5):380–392

    Article  CAS  PubMed  Google Scholar 

  3. McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33(14):1787–1847

    Article  PubMed  Google Scholar 

  4. Slaughter MS, Aaronson K, Najjar S et al (2011) Results of the HeartWare ADVANCE Bridge to Transplant Trial and CAP presented October 2nd 2011, EACTS Lissabon

  5. Starling RC, Naka Y, Boyle AJ et al (2011) Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol 57(19):1890–1898

    Article  PubMed  Google Scholar 

  6. Levy WC, Mozaffarian D, Linker DT et al (2006) The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation 113(11):1424–1433

    Article  PubMed  Google Scholar 

  7. Dandel M, Weng Y, Siniawski H et al (2005) Long-term results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation 112(9 Suppl):I37–I45

    Article  PubMed  Google Scholar 

  8. Saito S, Matsumiya G, Sakaguchi T et al (2010) Cardiac fibrosis and cellular hypertrophy decrease the degree of reverse remodeling and improvement in cardiac function during left ventricular assist. J Heart Lung Transplant 29(6):672–679

    Article  PubMed  Google Scholar 

  9. Maybaum S, Mancini D, Xydas S et al (2007) Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation 115(19):2497–2505

    Article  PubMed  Google Scholar 

  10. Dandel M, Weng Y, Siniawski H et al (2008) Prediction of cardiac stability after weaning from left ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation 118(14 Suppl):S94–S105

    Article  PubMed  Google Scholar 

  11. Mann DL, Barger PM, Burkhoff D (2012) Myocardial recovery and the failing heart: myth, magic, or molecular target? J Am Coll Cardiol 60(24):2465–2472

    Article  PubMed Central  PubMed  Google Scholar 

  12. Farrar DJ, Holman WR, McBride LR et al (2002) Long-term follow-up of Thoratec ventricular assist device bridge-to-recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant 21(5):516–521

    Article  PubMed  Google Scholar 

  13. Kirklin JK, Naftel DC, Pagani FD et al (2014) Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant 33(6):555–564

    Article  PubMed  Google Scholar 

  14. Dandel M, Weng Y, Siniawski H et al (2012) Pre-explant stability of unloading-promoted cardiac improvement predicts outcome after weaning from ventricular assist devices. Circulation 126(11 Suppl 1):S9–S19

    Article  PubMed  Google Scholar 

  15. Birks EJ, Tansley PD, Hardy J et al (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 355(18):1873–1884

    Article  CAS  PubMed  Google Scholar 

  16. Birks EJ, Miller L (2012) Myocardial recovery with use of ventricular assist devices. In: Kormos RL, Miller L (eds) Mechnical circulatory support a companion to Braunwald’s heart disease. Elsevier, Philadelphia, pp 220–238

  17. Nasseri BA, Kukucka M, Dandel M et al (2007) Intramyocardial delivery of bone marrow mononuclear cells and mechanical assist device implantation in patients with end-stage cardiomyopathy. Cell Transplant 16(9):941–949

    Article  PubMed  Google Scholar 

  18. Hetzer R, Potapov EV, Weng Y et al (2004) Implantation of MicroMed DeBakey VAD through left thoracotomy after previous median sternotomy operations. Ann Thorac Surg 77(1):347–350

    Article  PubMed  Google Scholar 

  19. Krabatsch T, Drews T, Potapov E et al (2014) Different surgical strategies for implantation of continuous-flow VADs – Experience from Deutsches Herzzentrum Berlin. Ann Cardiothoracic Surg 3(5):472–474

    Google Scholar 

  20. Haberl T, Riebandt J, Mahr S et al (2014) Viennese approach to minimize the invasiveness of ventricular assist device implantation. Eur J Cardiothorac Surg 46(6):991–996

    Article  PubMed  Google Scholar 

  21. Cheung A, Bashir J, Kaan A et al (2010) Minimally invasive, off-pump explant of a continuous-flow left ventricular assist device. J Heart Lung Transplant 29(7):808–810

    Article  PubMed  Google Scholar 

  22. Najjar SS, Slaughter MS, Pagani FD et al (2014) An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant 33(1):23–34

    Article  PubMed  Google Scholar 

  23. Dandel M, Potapov E, Krabatsch T et al (2013) Load dependency of right ventricular performance is a major factor to be considered in decision making before ventricular assist device implantation. Circulation 128(11 Suppl 1):S14–S23

    Article  PubMed  Google Scholar 

  24. Dandel M, Weng Y, Siniawski H et al (2011) Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criteria for weaning from ventricular assist devices. Eur Heart J 32(9):1148–1160

    Article  PubMed Central  PubMed  Google Scholar 

  25. Cowger JA, Romano MA, Shah P et al (2014) Hemolysis: a harbinger of adverse outcome after left ventricular assist device implant. J Heart Lung Transplant 33(1):35–43

    Article  PubMed  Google Scholar 

  26. Potapov EV, Stepanenko A, Kaufmann F et al (2013) Thrombosis and cable damage in the HeartWare pump: clinical decisions and surgical technique. ASAIO J 59(1):37–40

    Article  PubMed  Google Scholar 

  27. Slaughter MS (2010) Hematologic effects of continuous flow left ventricular assist devices. J Cardiovasc Transl Res 3(6):618–624

    Article  PubMed  Google Scholar 

  28. Slaughter MS, Sobieski MA II, Graham JD et al (2011) Platelet activation in heart failure patients supported by the HeartMate II ventricular assist device. Int J Artif Organs 34(6):461–468

    Article  CAS  PubMed  Google Scholar 

  29. Starling RC, Moazami N, Silvestry SC et al (2013) Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med 370(1):33–40

    Article  PubMed  Google Scholar 

  30. Stepanenko A, Krabatsch T, Hennig E et al (2011) Retrospective hemolysis comparison between patients with centrifugal biventricular assist and left ventricular assist devices. ASAIO J 57(5):382–387

    Article  CAS  PubMed  Google Scholar 

  31. Potapov EV, Kaufmann F, Stepanenko A et al (2012) Pump exchange for cable damage in patients supported with HeartMate II left ventricular assist device. ASAIO J 58(6):578–582

    Article  PubMed  Google Scholar 

  32. Kirklin JK, Naftel DC, Kormos RL et al (2011) Third INTERMACS Annual Report: the evolution of destination therapy in the United States. J Heart Lung Transplant 30(2):115–123

    Article  PubMed  Google Scholar 

  33. John R, Mantz K, Eckman P et al (2010) Aortic valve pathophysiology during left ventricular assist device support. J Heart Lung Transplant 29(12):1321–1329

    Article  PubMed  Google Scholar 

  34. Pak SW, Uriel N, Takayama H et al (2010) Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. J Heart Lung Transplant 29(10):1172–1176

    Article  PubMed  Google Scholar 

  35. Cowger J, Pagani FD, Haft JW et al (2010) The development of aortic insufficiency in left ventricular assist device-supported patients. Circ Heart Fail 3(6):668–674

    Article  PubMed Central  PubMed  Google Scholar 

  36. Aggarwal A, Raghuvir R, Eryazici P et al (2013) The development of aortic insufficiency in continuous-flow left ventricular assist device-supported patients. Ann Thorac Surg 95(2):493–498

    Article  PubMed  Google Scholar 

  37. Soleimani B, Haouzi A, Manoskey A et al (2012) Development of aortic insufficiency in patients supported with continuous flow left ventricular assist devices. ASAIO J 58(4):326–329

    Article  PubMed  Google Scholar 

  38. D’Ancona G, Pasic M, Buz S et al (2012) TAVI for pure aortic valve insufficiency in a patient with a left ventricular assist device. Ann Thorac Surg 93(4):e89–e91

    Article  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. T. Krabatsch, E. Potapov, S. Soltani, M. Dandel, V. Falk und C. Knosalla geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Krabatsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krabatsch, T., Potapov, E., Soltani, S. et al. Ventrikuläre Langzeitunterstützung mit implantierbaren kontinuierlichen Flusspumpen. Herz 40, 231–239 (2015). https://doi.org/10.1007/s00059-015-4209-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-015-4209-3

Schlüsselwörter

Keywords

Navigation