Skip to main content
Log in

Pharmakologie der neuen oralen Antikoagulanzien

Pharmacology of the new oral anticoagulants

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die neuen oralen Antikoagulanzien wie Dabigatran, Rivaroxaban, Apixaban oder Edoxaban zeigen pharmakokinetische und pharmakodynamische Kenndaten vergleichbar denjenigen niedermolekularer Heparine. Maximale Wirkspiegel werden 2 bis 4 Stunden nach Einnahme erreicht, die Halbwertszeiten liegen bei 7 bis 14 Stunden. Die Substanzen unterscheiden sich insbesondere hinsichtlich der renalen Elimination. Dosisanpassung erfolgt lediglich bei Nierenfunktionsstörungen, erhöhtem Blutungsrisiko sowie bei bestimmten Begleitmedikationen. Durch die kurze Wirkdauer der Substanzen ist eine präoperative Therapieumstellung nicht erforderlich. Spezifische Antidots stehen bisher nicht zur Verfügung, eine Antagonisierung der gerinnungshemmenden Wirkung wird allerdings aufgrund der kurzen Wirkdauer nur selten erforderlich sein. Für die Konzentrationsbestimmung im Blut stehen inzwischen spezielle Testverfahren zur Verfügung. Im Notfall schließt eine normale Thrombinzeit bzw. ein normalwertiger Anti-Faktor-Xa-Test das Vorhandensein wirksamer Konzentrationen von Dabigatran bzw. Faktor-Xa-Inhibtoren im Blut aus.

Die neuen oralen Antikoagulanzien werden sowohl in der Thromboseprophylaxe als auch in der (längerfristigen) gerinnungshemmenden Therapie, beispielsweise bei Vorhofflimmern oder nach tiefer Beinvenenthrombose, eingesetzt. Bei Dabigatran liegen Prophylaxedosis (1-mal 220 mg) und therapeutische Dosis (2-mal 110 bis 2-mal 150 mg) recht eng beisammen, bei den Faktor-Xa-Inhibitoren Rivaroxaban und Apixaban entspricht die therapeutische Dosis in etwa dem Doppelten der Prophylaxedosis (Rivaroxaban: Thromboseprophylaxe 1-mal 10 mg, Vorhofflimmern 1-mal 20 mg, Therapie der venösen Thrombose initial 2-mal 15 mg, dann 1-mal 20 mg; Apixaban: Prophylaxedosis 2-mal 2,5 mg, Antikoaglation bei Vorhofflimmern 2-mal 5 mg).

Abstract

New oral anticoagulants, such as dabigatran, rivaroxaban, apixaban, and edoxaban display pharmacologic and pharmacodynamic data similar to low molecular weight heparins. Peak levels are found 2–4 h after oral ingestion and elimination half-lives are in the range of 7–14 h. The drugs differ primarily concerning renal elimination. Dose adjustment is only performed in patients with impaired renal function, high risk of bleeding and patients with co-medications which influence the metabolism or anticoagulant effect of the drugs. Due to the short half-life, perioperative bridging is not necessary. Currently, no specific antidotes are available: however, assay systems are available for measuring the plasma concentration of dabigatran and rivaroxaban. In emergency cases a normal thrombin time excludes relevant levels of dabigatran, whereas a normal anti-factor Xa assay result excludes relevant levels of factor Xa inhibitors.

The new anticoagulants are being used for prophylaxis of venous thrombosis in elective hip and knee surgery, as well as for treatment of venous thrombosis and for prevention of stroke and systemic embolism in patients with atrial fibrillation. Additional indications are to follow. Dabigatran is given at a dose of 110 mg initially 1–4 h after surgery followed by 220 mg once daily for prophylaxis of thrombosis and at doses of 110 mg or 150 mg twice daily for therapeutic anticoagulation. The prophylactic and therapeutic doses of rivaroxaban are 10 and 20 mg and, of apixaban 2.5 mg and 5 mg twice daily, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Krauel K, Hackbarth C, Furll B, Greinacher A (2012) Heparin-induced thrombocytopenia: in vitro studies on the interaction of dabigatran, rivaroxaban, and low-sulfated heparin, with platelet factor 4 and anti-PF4/heparin antibodies. Blood 119:1248–1255

    Article  PubMed  CAS  Google Scholar 

  2. Wienen W, Stassen JM, Priepke H et al (2007) Antithrombotic and anticoagulant effects of the direct thrombin inhibitor dabigatran, and its oral prodrug, dabigatran etexilate, in a rabbit model of venous thrombosis. J Thromb Haemost 5:1237–1242

    Article  PubMed  CAS  Google Scholar 

  3. Hauel NH, Nar H, Priepke H et al (2002) Structure-based design of novel potent nonpeptide thrombin inhibitors. J Med Chem 45:1757–1766

    Article  PubMed  CAS  Google Scholar 

  4. Stangier J (2008) Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor dabigatran etexilate. Clin Pharmacokinet 47:285–295

    Article  PubMed  CAS  Google Scholar 

  5. Schulman S, Kearon C, Kakkar AK et al (2009) Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med 361:2342–2352

    Article  PubMed  CAS  Google Scholar 

  6. Connolly SJ, Ezekowitz MD, Yusuf S et al (2009) Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 361:1139–1151

    Article  PubMed  CAS  Google Scholar 

  7. Stangier J, Rathgen K, Stahle H et al (2007) The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br J Clin Pharmacol 64:292–303

    Article  PubMed  CAS  Google Scholar 

  8. Stangier J, Rathgen K, Stahle H, Mazur D (2010) Influence of renal impairment on the pharmacokinetics and pharmacodynamics of oral dabigatran etexilate: an open-label, parallel-group, single-centre study. Clin Pharmacokinet 49:259–268

    Article  PubMed  CAS  Google Scholar 

  9. Stangier J, Clemens A (2009) Pharmacology, pharmacokinetics, and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor. Clin Appl Thromb Hemost 15(Suppl 1):9S–16S

    Article  PubMed  CAS  Google Scholar 

  10. Stangier J, Eriksson BI, Dahl OE et al (2005) Pharmacokinetic profile of the oral direct thrombin inhibitor dabigatran etexilate in healthy volunteers and patients undergoing total hip replacement. J Clin Pharmacol 45:555–563

    Article  PubMed  CAS  Google Scholar 

  11. Stangier J, Stahle H, Rathgen K et al (2008) Pharmacokinetics and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor, are not affected by moderate hepatic impairment. J Clin Pharmacol 48:1411–1419

    Article  PubMed  CAS  Google Scholar 

  12. Stangier J, Stahle H, Rathgen K, Fuhr R (2008) Pharmacokinetics and pharmacodynamics of the direct oral thrombin inhibitor dabigatran in healthy elderly subjects. Clin Pharmacokinet 47:47–59

    Article  PubMed  CAS  Google Scholar 

  13. Nutescu E, Chuatrisorn I, Hellenbart E (2011) Drug and dietary interactions of warfarin and novel oral anticoagulants: an update. J Thromb Thrombolysis 31:326–343

    Article  PubMed  CAS  Google Scholar 

  14. Clemens A, Haertter S, Friedman J et al (2012) Twice daily dosing of dabigatran for stroke prevention in atrial fibrillation: a pharmacokinetic justification. Curr Med Res Opin 28:195–201

    Article  PubMed  CAS  Google Scholar 

  15. Perzborn E, Strassburger J, Wilmen A et al (2005) In vitro and in vivo studies of the novel antithrombotic agent BAY 59–7939 – an oral, direct Factor Xa inhibitor. J Thromb Haemost 3:514–521

    Article  PubMed  CAS  Google Scholar 

  16. Patel MR, Mahaffey KW, Garg J et al (2011) Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 365:883–891

    Article  PubMed  CAS  Google Scholar 

  17. Bauersachs R, Berkowitz SD, Brenner B et al (2010) Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med 363:2499–2510

    Article  PubMed  CAS  Google Scholar 

  18. Agnelli G, Gallus A, Goldhaber SZ et al (2007) Treatment of proximal deep-vein thrombosis with the oral direct factor Xa inhibitor rivaroxaban (BAY 59–7939): the ODIXa-DVT (Oral Direct Factor Xa Inhibitor BAY 59–7939 in Patients With Acute Symptomatic Deep-Vein Thrombosis) study. Circulation 116:180–187

    Article  PubMed  CAS  Google Scholar 

  19. Buller HR, Lensing AW, Prins MH et al (2008) A dose-ranging study evaluating once-daily oral administration of the factor Xa inhibitor rivaroxaban in the treatment of patients with acute symptomatic deep vein thrombosis: the Einstein-DVT Dose-Ranging Study. Blood 112:2242–2247

    Article  PubMed  CAS  Google Scholar 

  20. Mueck W, Borris LC, Dahl OE et al (2008) Population pharmacokinetics and pharmacodynamics of once- and twice-daily rivaroxaban for the prevention of venous thromboembolism in patients undergoing total hip replacement. Thromb Haemost 100:453–461

    PubMed  CAS  Google Scholar 

  21. Mueck W, Lensing AW, Agnelli G et al (2011) Rivaroxaban: population pharmacokinetic analyses in patients treated for acute deep-vein thrombosis and exposure simulations in patients with atrial fibrillation treated for stroke prevention. Clin Pharmacokinet 50:675–686

    Article  PubMed  CAS  Google Scholar 

  22. Kubitza D, Becka M, Wensing G et al (2005) Safety, pharmacodynamics, and pharmacokinetics of BAY 59–7939 – an oral, direct Factor Xa inhibitor – after multiple dosing in healthy male subjects. Eur J Clin Pharmacol 61:873–880

    Article  PubMed  CAS  Google Scholar 

  23. Kubitza D, Becka M, Mueck W, Zuehlsdorf M (2006) Safety, tolerability, pharmacodynamics, and pharmacokinetics of rivaroxaban – an oral, direct factor Xa inhibitor – are not affected by aspirin. J Clin Pharmacol 46:981–990

    Article  PubMed  CAS  Google Scholar 

  24. Kubitza D, Becka M, Voith B et al (2005) Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59–7939, an oral, direct factor Xa inhibitor. Clin Pharmacol Ther 78:412–421

    Article  PubMed  CAS  Google Scholar 

  25. Mueck W, Becka M, Kubitza D et al (2007) Population model of the pharmacokinetics and pharmacodynamics of rivaroxaban – an oral, direct factor xa inhibitor – in healthy subjects. Int J Clin Pharmacol Ther 45:335–344

    PubMed  CAS  Google Scholar 

  26. Graff J, von Hentig N, Misselwitz F et al (2007) Effects of the oral, direct factor xa inhibitor rivaroxaban on platelet-induced thrombin generation and prothrombinase activity. J Clin Pharmacol 47:1398–1407

    Article  PubMed  CAS  Google Scholar 

  27. Kubitza D, Becka M, Zuehlsdorf M, Mueck W (2007) Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY 59–7939) in healthy subjects. J Clin Pharmacol 47:218–226

    Article  PubMed  CAS  Google Scholar 

  28. Gheorghiade M, Thyssen A, Zolynas R et al (2010) Pharmacokinetics and pharmacodynamics of rivaroxaban and its effect on biomarkers of hypercoagulability in patients with chronic heart failure. J Heart Lung Transplant 30:218–226

    Article  PubMed  Google Scholar 

  29. Kubitza D, Becka M, Mueck W et al (2010) Effects of renal impairment on the pharmacokinetics, pharmacodynamics and safety of rivaroxaban, an oral, direct Factor Xa inhibitor. Br J Clin Pharmacol 70:703–712

    Article  PubMed  CAS  Google Scholar 

  30. Kubitza D, Becka M, Roth A, Mueck W (2008) Dose-escalation study of the pharmacokinetics and pharmacodynamics of rivaroxaban in healthy elderly subjects. Curr Med Res Opin 24:2757–2765

    Article  PubMed  CAS  Google Scholar 

  31. Kubitza D, Becka M, Mueck W, Zuehlsdorf M (2007) Rivaroxaban (BAY 59–7939) – an oral, direct Factor Xa inhibitor – has no clinically relevant interaction with naproxen. Br J Clin Pharmacol 63:469–476

    Article  PubMed  CAS  Google Scholar 

  32. Kubitza D, Becka M, Zuehlsdorf M, Mueck W (2006) Effect of food, an antacid, and the H2 antagonist ranitidine on the absorption of BAY 59–7939 (rivaroxaban), an oral, direct factor Xa inhibitor, in healthy subjects. J Clin Pharmacol 46:549–558

    Article  PubMed  CAS  Google Scholar 

  33. Eerenberg ES, Kamphuisen PW, Sijpkens MK et al (2011) Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-controlled, crossover study in healthy subjects. Circulation 124:1573–1579

    Article  PubMed  CAS  Google Scholar 

  34. Jiang X, Crain EJ, Luettgen JM et al (2009) Apixaban, an oral direct factor Xa inhibitor, inhibits human clot-bound factor Xa activity in vitro. Thromb Haemost 101:780–782

    PubMed  CAS  Google Scholar 

  35. Luettgen JM, Knabb RM, He K et al (2011) Apixaban inhibition of factor Xa: Microscopic rate constants and inhibition mechanism in purified protein systems and in human plasma. J Enzyme Inhib Med Chem 26:514–526

    Article  PubMed  CAS  Google Scholar 

  36. Connolly SJ, Eikelboom J, Joyner C et al (2011) Apixaban in patients with atrial fibrillation. N Engl J Med 364:806–817

    Article  PubMed  CAS  Google Scholar 

  37. Granger CB, Alexander JH, McMurray JJ et al (2011) Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 365:981–992

    Article  PubMed  CAS  Google Scholar 

  38. Raghavan N, Frost CE, Yu Z et al (2009) Apixaban metabolism and pharmacokinetics after oral administration to humans. Drug Metab Dispos 37:74–81

    Article  PubMed  CAS  Google Scholar 

  39. Wang L, Zhang D, Raghavan N et al (2010) In vitro assessment of metabolic drug-drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies. Drug Metab Dispos 38:448–458

    Article  PubMed  CAS  Google Scholar 

  40. Camm AJ, Bounameaux H (2011) Edoxaban: a new oral direct factor xa inhibitor. Drugs 71:1503–1526

    Article  PubMed  CAS  Google Scholar 

  41. Ogata K, Mendell-Harary J, Tachibana M et al (2010) Clinical safety, tolerability, pharmacokinetics, and pharmacodynamics of the novel factor Xa inhibitor edoxaban in healthy volunteers. J Clin Pharmacol 50:743–753

    Article  PubMed  CAS  Google Scholar 

  42. Fukuda T, Honda Y, Kamisato C et al (2012) Reversal of anticoagulant effects of edoxaban, an oral, direct factor Xa inhibitor, with haemostatic agents. Thromb Haemost 107:253–259

    Article  PubMed  CAS  Google Scholar 

  43. Hillarp A, Baghaei F, Fagerberg Blixter I et al (2011) Effects of the oral, direct factor Xa inhibitor rivaroxaban on commonly used coagulation assays. J Thromb Haemost 9:133–139

    Article  PubMed  CAS  Google Scholar 

  44. Lindhoff-Last E, Samama MM, Ortel TL et al (2010) Assays for measuring rivaroxaban: their suitability and limitations. Ther Drug Monit 32:673–679

    Article  PubMed  CAS  Google Scholar 

  45. Barrett YC, Wang Z, Frost C, Shenker A (2010) Clinical laboratory measurement of direct factor Xa inhibitors: anti-Xa assay is preferable to prothrombin time assay. Thromb Haemost 104:1263–1271

    Article  PubMed  CAS  Google Scholar 

  46. Samama MM, Amiral J, Guinet C et al (2010) An optimised, rapid chromogenic assay, specific for measuring direct factor Xa inhibitors (rivaroxaban) in plasma. Thromb Haemost 104:1078–1079

    Article  PubMed  CAS  Google Scholar 

  47. Samama MM, Contant G, Spiro TE et al (2012) Evaluation of the anti-factor Xa chromogenic assay for the measurement of rivaroxaban plasma concentrations using calibrators and controls. Thromb Haemost 107:379–387

    Article  PubMed  CAS  Google Scholar 

  48. Becker RC, Yang H, Barrett Y et al (2011) Chromogenic laboratory assays to measure the factor Xa-inhibiting properties of apixaban – an oral, direct and selective factor Xa inhibitor. J Thromb Thrombolysis 32:183–187

    Article  PubMed  Google Scholar 

  49. Dempfle CE, Hennerici MG (2010) Dabigatran and stroke thrombolysis. Cerebrovasc Dis 30:203–205

    Article  PubMed  Google Scholar 

  50. van Ryn J, Baruch L, Clemens A (2012) Interpretation of Point-of-care INR Results in Patients Treated with Dabigatran. Am J Med 125(4):417–420

    Article  Google Scholar 

  51. Baruch L, Sherman O (2011) Potential inaccuracy of point-of-care INR in dabigatran-treated patients. Ann Pharmacother 45:e40

    Article  PubMed  Google Scholar 

  52. DeRemer CE, Gujral JS, Thornton JW, Sorrentino RA (2011) Dabigatran falsely elevates point of care international normalized ratio results. Am J Med 124:e5–e6

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Referentenhonorare Bayer, Boehringer Ingelheim, GSK, Daiichi Pharma, Roche Diagnostics, IL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-E. Dempfle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dempfle, CE. Pharmakologie der neuen oralen Antikoagulanzien. Herz 37, 362–369 (2012). https://doi.org/10.1007/s00059-012-3616-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-012-3616-y

Schlüsselwörter

Keywords

Navigation